Skip to main content

Advertisement

Log in

Prevalence and risk factors for intestinal carriage of CTX-M-type ESBLs in Enterobacteriaceae from a Thai community

European Journal of Clinical Microbiology & Infectious Diseases Aims and scope Submit manuscript

Abstract

The incidence of infections caused by antimicrobial-resistant Enterobacteriaceae in Thailand is increasing and human intestinal flora is an important reservoir for these organisms. This study was carried out to determine the intestinal carriage of bla CTX-M extended spectrum ß-lactamase-positive Enterobacteriaceae (ESBL + E) and AmpC-positive Enterobacteriaceae in a community setting in Northern Thailand, and to identify potential risk factors for carriage. A total of 307 fecal samples were collected from healthy volunteers in Phitsanulok province, and cefotaxime-resistant Enterobacteriaceae (CtxRE) were isolated using selective media. Polymerase chain reaction (PCR) was used to detect ESBL and AmpC genes. Risk factors were analyzed using multiple logistic regression. Genotyping was performed by multilocus sequence typing (MLST) analysis. Two hundred ninety-one CtxRE isolates were obtained and Escherichia coli was the predominant organism (66.3%). The intestinal carriage rates of bla CTX-M ESBL + E and AmpC-positive Enterobacteriaceae were 52.1% and 6.2%, respectively. Comparative levels of bla CTX-M group 1 and bla CTX-M group 9 were found while bla CMY-2 was the predominant genotype among AmpC genes. Co-existence of two ß-lactamase genes in a single isolate was found in 6.5% of isolates. Consumption of undercooked meat was strongly associated with intestinal carriage of bla CTX-M ESBL + E (p = 0.003, OR = 2.133, 95% CI = 1.289–3.530). Phylogenetic grouping and MLST analysis of E. coli isolates revealed the presence of E. coli B2-ST131 (n = 8). Of these, seven carried bla CTX-M-group 9 and 1 carried bla CMY-2. Our results suggest that residents in Thailand are at high risk for developing endogenous infections caused by antibiotic-resistant Enterobacteriaceae.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1

Similar content being viewed by others

References

  1. Ruppé É, Woerther PL, Barbier F (2015) Mechanisms of antimicrobial resistance in gram-negative bacilli. Ann Intensive Care 5:61

    Article  PubMed  Google Scholar 

  2. da Costa PM, Loureiro L, Matos AJ (2013) Transfer of multidrug-resistant bacteria between intermingled ecological niches: the interface between humans, animals and the environment. Int J Environ Res Public Health 10:278–294

    Article  PubMed  PubMed Central  Google Scholar 

  3. Woerther PL, Burdet C, Chachaty E, Andremont A (2013) Trends in human fecal carriage of extended-spectrum ß-lactamases in the community: toward the globalization of CTX-M. Clin Microbiol Rev 26:744–758

    Article  PubMed  PubMed Central  Google Scholar 

  4. Liss BJ, Vehreschild JJ, Cornely OA, Hallek M, Fätkenheuer G, Wisplinghoff H et al (2012) Intestinal colonization and blood stream infections due to vancomycin-resistant enterococci (VRE) and extended-spectrum ß-lactamase-producing Enterobacteriaceae (ESBLE) in patients with haematological and oncological malignancies. Infection 40:613–619

    Article  CAS  PubMed  Google Scholar 

  5. Vehreschild MJ, Hamprecht A, Peterson L, Schubert S, Häntschel M, Peter S et al (2014) A multicentre cohort study on colonization and infection with ESBL-producing Enterobacteriaceae in high-risk patients with haematological malignancies. J Antimicrob Chemother 69:3387–3392

    Article  CAS  PubMed  Google Scholar 

  6. Nakayama T, Ueda S, Huong BT, Tuyen le D, Komalamisra C, Kusolsuk T et al (2015) Wide dissemination of extended-spectrum ß-lactamase-producing Escherichia coli in community residents in the Indochinese peninsula. Infect Drug Resist 8:1–5

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. van Hoek AH, Schouls L, van Santen MG, Florijn A, de Greeff SC, van Duijkeren E (2015) Molecular characteristics of extended-spectrum cephalosporin-resistant Enterobacteriaceae from humans in the community. PLoS One 10:e0129085

    Article  PubMed  PubMed Central  Google Scholar 

  8. Zhang H, Zhou Y, Guo S, Chang W (2015) High prevalence and risk factors of fecal carriage of CTX-M type extended-spectrum ß-lactamase-producing Enterobacteriaceae from healthy rural residents of Taian, China. Front Microbiol 6:239

    PubMed  PubMed Central  Google Scholar 

  9. Ulstad CR, Solheim M, Berg S, Lindbæk M, Dahle UR, Wester AL (2016) Carriage of ESBL/AmpC-producing or ciprofloxacin non-susceptible Escherichia coli and Klebsiella spp. in healthy people in Norway. Antimicrob Resist Infect Control 5:57

    Article  PubMed  PubMed Central  Google Scholar 

  10. Sasaki T, Hirai I, Niki M, Nakamura T, Komalamisra C, Maipanich W et al (2010) High prevalence of CTX-M ß-lactamase-producing Enterobacteriaceae in stool specimens obtained from healthy individuals in Thailand. J Antimicrob Chemother 65:666–668

    Article  CAS  PubMed  Google Scholar 

  11. Luvsansharav UO, Hirai I, Niki M, Sasaki T, Makimoto K, Komalamisra C et al (2011) Analysis of risk factors for a high prevalence of extended-spectrum ß-lactamase-producing Enterobacteriaceae in asymptomatic individuals in rural Thailand. J Med Microbiol 60:619–624

    Article  PubMed  Google Scholar 

  12. Luvsansharav UO, Hirai I, Nakata A, Imura K, Yamauchi K, Niki M et al (2012) Prevalence of and risk factors associated with faecal carriage of CTX-M ß-lactamase-producing Enterobacteriaceae in rural Thai communities. J Antimicrob Chemother 67:1769–1774

    Article  CAS  PubMed  Google Scholar 

  13. Boonyasiri A, Tangkoskul T, Seenama C, Saiyarin J, Tiengrim S, Thamlikitkul V (2014) Prevalence of antibiotic-resistant bacteria in healthy adults, foods, food animals, and the environment in selected areas in Thailand. Pathog Glob Health 108:235–245

    Article  PubMed  PubMed Central  Google Scholar 

  14. Jean SS, Hsueh PR, SMART Asia-Pacific Group (2017) Distribution of ESBLs, AmpC ß-lactamases and carbapenemases among Enterobacteriaceae isolates causing intra-abdominal and urinary tract infections in the Asia-Pacific region during 2008-14: results from the study for monitoring antimicrobial resistance trends (SMART). J Antimicrob Chemother 72:166–171

    Article  PubMed  Google Scholar 

  15. Clinical and Laboratory Standards Institute (CLSI) (2013) Performance standards for antimicrobial susceptibility testing; Twenty-third informational supplement. CLSI Document M100-S23. CLSI, Wayne, PA

  16. Falagas ME, Karageorgopoulos DE (2008) Pandrug resistance (PDR), extensive drug resistance (XDR), and multidrug resistance (MDR) among gram-negative bacilli: need for international harmonization in terminology. Clin Infect Dis 46:1121–1122

    Article  PubMed  Google Scholar 

  17. Pérez-Pérez FJ, Hanson ND (2002) Detection of plasmid-mediated AmpC ß-lactamase genes in clinical isolates by using multiplex PCR. J Clin Microbiol 40:2153–2162

    Article  PubMed  PubMed Central  Google Scholar 

  18. Woodford N, Fagan EJ, Ellington MJ (2006) Multiplex PCR for rapid detection of genes encoding CTX-M extended-spectrum ß-lactamases. J Antimicrob Chemother 57:154–155

    Article  CAS  PubMed  Google Scholar 

  19. Poirel L, Walsh TR, Cuvillier V, Nordmann P (2011) Multiplex PCR for detection of acquired carbapenemase genes. Diagn Microbiol Infect Dis 70:119–123

    Article  CAS  PubMed  Google Scholar 

  20. Clermont O, Bonacorsi S, Bingen E (2000) Rapid and simple determination of the Escherichia coli phylogenetic group. Appl Environ Microbiol 66:4555–4558

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Versalovic J, Koeuth T, Lupski JR (1991) Distribution of repetitive DNA sequences in eubacteria and application to fingerprinting of bacterial genomes. Nucleic Acids Res 19:6823–6831

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Luvsansharav UO, Hirai I, Niki M, Nakata A, Yoshinaga A, Moriyama T et al (2011) Prevalence of fecal carriage of extended-spectrum ß-lactamase-producing Enterobacteriaceae among healthy adult people in Japan. J Infect Chemother 17:722–725

    Article  CAS  PubMed  Google Scholar 

  23. Ko YJ, Moon HW, Hur M, Park CM, Cho SE, Yun YM (2013) Fecal carriage of extended-spectrum ß-lactamase-producing Enterobacteriaceae in Korean community and hospital settings. Infection 41:9–13

    Article  CAS  PubMed  Google Scholar 

  24. Changkaew K, Intarapuk A, Utrarachkij F, Nakajima C, Suthienkul O, Suzuki Y (2015) Antimicrobial resistance, extended-spectrum ß-lactamase productivity, and class 1 integrons in Escherichia coli from healthy swine. J Food Prot 78:1442–1450

    Article  CAS  PubMed  Google Scholar 

  25. Trongjit S, Angkittitrakul S, Chuanchuen R (2016) Occurrence and molecular characteristics of antimicrobial resistance of Escherichia coli from broilers, pigs and meat products in Thailand and Cambodia provinces. Microbiol Immunol 60:575–585

    Article  CAS  PubMed  Google Scholar 

  26. Liebana E, Carattoli A, Coque TM, Hasman H, Magiorakos AP, Mevius D et al (2013) Public health risks of enterobacterial isolates producing extended-spectrum ß- lactamases or AmpC ß-lactamases in food and food-producing animals: an EU perspective of epidemiology, analytical methods, risk factors, and control options. Clin Infect Dis 56:1030–1037

    Article  PubMed  Google Scholar 

  27. Garrido A, Seral C, Gude MJ, Casado C, González-Domínguez M, Sáenz Y et al (2014) Characterization of plasmid-mediated ß-lactamases in fecal colonizing patients in the hospital and community setting in Spain. Microb Drug Resist 20:301–304

    Article  CAS  PubMed  Google Scholar 

  28. Singtohin S, Chanawong A, Lulitanond A, Sribenjalux P, Auncharoen A, Kaewkes W et al (2010) CMY-2, CMY-8b, and DHA-1 plasmid-mediated AmpC ß-lactamases among clinical isolates of Escherichia coli and Klebsiella pneumoniae from a university hospital, Thailand. Diagn Microbiol Infect Dis 68:271–277

    Article  CAS  PubMed  Google Scholar 

  29. Nüesch-Inderbinen M, Zurfluh K, Hächler H, Stephan R (2013) No evidence so far for the dissemination of carbapenemase-producing Enterobactericeae in the community in Switzerland. Antimicrob Resist Infect Control 2:23

    Article  PubMed  PubMed Central  Google Scholar 

  30. Nicolas-Chanoine MH, Bertrand X, Madec JY (2014) Escherichia coli ST131, an intriguing clonal group. Clin Microbiol Rev 27:543–574

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Netikul T, Sidjabat HE, Paterson DL, Kamolvit W, Tantisiriwat W, Steen JA et al (2014) Characterization of an IncN2-type bla NDM-1−carrying plasmid in Escherichia coli ST131 and Klebsiella pneumoniae ST11 and ST15 isolates in Thailand. J Antimicrob Chemother 69:3161–3163

    Article  CAS  PubMed  Google Scholar 

  32. Ender PT, Gajanana D, Johnston B, Clabots C, Tamarkin FJ, Johnson JR (2009) Transmission of an extended-spectrum ß-lactamase-producing Escherichia coli (sequence type ST131) strain between a father and daughter resulting in septic shock and emphysematous pyelonephritis. J Clin Microbiol 47:3780–3782

    Article  PubMed  PubMed Central  Google Scholar 

  33. Leflon-Guibout V, Blanco J, Amaqdouf K, Mora A, Guize L, Nicolas-Chanoine MH (2008) Absence of CTX-M enzymes but high prevalence of clones, including clone ST131, among fecal Escherichia coli isolates from healthy subjects living in the area of Paris, France. J Clin Microbiol 46:3900–3905

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Li B, Sun JY, Liu QZ, Han LZ, Huang XH, Ni YX (2011) High prevalence of CTX-M ß-lactamases in faecal Escherichia coli strains from healthy humans in Fuzhou, China. Scand J Infect Dis 43:170–174

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work was funded by Naresuan University (R2558B035), Royal Golden Jubilee-PhD program from Thailand Research Fund, Rajamangala University of Technology Lanna and Naresuan University (PHD/0054/2555, UT; PHD/0181/2557, AK). The authors would like to thank public health personnel for their help in sample collection and all participants who provided samples for this study. We would also like to thank Panuka Mate for her technical assistance.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to P. R. Niumsup.

Ethics declarations

Ethical approval

All procedures performed in studies involving human participants were in accordance with the ethical standards of the institutional and/or national research committee and with the 1964 Helsinki declaration and its later amendments or comparable ethical standards.

Informed consent

Written informed consent was obtained from all participants prior to their participation.

Conflict of interest

The authors declare that they have no conflict of interest.

Data availability

All data analyzed during the present study are included in this article or available from the corresponding author on reasonable request.

Electronic supplementary material

ESM 1

(DOCX 303 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Niumsup, P.R., Tansawai, U., Na-udom, A. et al. Prevalence and risk factors for intestinal carriage of CTX-M-type ESBLs in Enterobacteriaceae from a Thai community. Eur J Clin Microbiol Infect Dis 37, 69–75 (2018). https://doi.org/10.1007/s10096-017-3102-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10096-017-3102-9

Keywords

Navigation