Skip to main content

Advertisement

Log in

Impact of bacterial coinfection on clinical outcomes in pneumococcal pneumonia

  • Article
  • Published:
European Journal of Clinical Microbiology & Infectious Diseases Aims and scope Submit manuscript

Abstract

The aim of this study was to investigate the influence of bacterial coinfection on patients with pneumococcal pneumonia. We retrospectively analyzed the incidence, clinical features, microbial distributions, and outcomes of patients with bacterial coinfection in a cohort of 433 hospitalized patients with pneumococcal pneumonia. Eighty-five patients (19.6 %) were diagnosed with bacterial coinfection; the most frequent pathogens were Haemophilus influenzae (25 patients, 33.3 %), methicillin-susceptible Staphylococcus aureus (MSSA) (15 patients, 20.0 %), and Moraxella catarrhalis (13 patients, 17.3 %). The CURB-65 score and pneumonia severity index (PSI) were significantly higher in patients with bacterial coinfection (both P < 0.001). In addition, the proportion of patients with bacterial coinfection who met the Infectious Disease Society of America (IDSA)/American Thoracic Society (ATS) severe pneumonia criteria was significantly higher (P < 0.001). Multivariate logistic regression analysis identified three risk factors for bacterial coinfection in patients with pneumococcal pneumonia: alcoholism (odds ratio [OR], 5.12; 95 % confidence interval (95 % CI), 1.60–16.4; P = 0.006), hospitalization for 2 days or more within 90 days preceding admission (OR, 2.02; 95 % CI, 1.03–3.98; P = 0.041), and residence in a nursing home or extended care facility (OR, 3.22; 95 % CI, 1.48–6.97; P = 0.003). Multivariate analysis for 30-day mortality showed that bacterial coinfection was a significant adverse prognostic factor (OR, 2.50; 95 % CI, 1.13–5.53; P = 0.023), independent of IDSA/ATS severe pneumonia, PSI, or healthcare-associated pneumonia. In conclusion, bacterial coinfection may have an adverse impact on severity and outcomes of pneumococcal pneumonia.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. World Health Organization. Global health observatory (GHO): causes of death in 2008. Available from: http://www.who.int/gho/mortality_burden_disease/causes_death_2008/en/index.html. Accessed 10 May 2015

  2. American Thoracic Society; Infectious Diseases Society of America (2005) Guidelines for the management of adults with hospital-acquired, ventilator-associated, and healthcare-associated pneumonia. Am J Respir Crit Care Med 171(4):388–416

  3. Mandell LA, Wunderink RG, Anzueto A, Bartlett JG, Campbell GD, Dean NC et al (2007) Infectious Diseases Society of America/American Thoracic Society consensus guidelines on the management of community-acquired pneumonia in adults. Clin Infect Dis 44:S27–S72

    Article  CAS  PubMed  Google Scholar 

  4. Carratalà J, Mykietiuk A, Fernández-Sabé N, Suárez C, Dorca J, Verdaguer R, Manresa F, Gudiol F (2007) Health care-associated pneumonia requiring hospital admission: epidemiology, antibiotic therapy, and clinical outcomes. Arch Intern Med 167(13):1393–1399

    Article  PubMed  Google Scholar 

  5. Polverino E, Torres A, Menendez R, Cillóniz C, Valles JM, Capelastegui A, Marcos MA, Alfageme I, Zalacain R, Almirall J, Molinos L, Bello S, Rodríguez F, Blanquer J, Dorado A, Llevat N, Rello J (2013) HCAP Study investigators. Microbial aetiology of healthcare associated pneumonia in Spain: a prospective, multicentre, case-control study. Thorax 68(11):1007–1014

    Article  PubMed  Google Scholar 

  6. Arancibia F, Bauer TT, Ewig S, Mensa J, Gonzalez J, Niederman MS et al (2002) Community-acquired pneumonia due to gram-negative bacteria and Pseudomonas aeruginosa: incidence, risk, and prognosis. Arch Intern Med 162(16):1849–1858

    Article  PubMed  Google Scholar 

  7. Shorr AF, Zilberberg MD, Reichley R, Kan J, Hoban A, Hoffman J et al (2012) Validation of a clinical score for assessing the risk of resistant pathogens in patients with pneumonia presenting to the emergency department. Clin Infect Dis 54(2):193–198

    Article  PubMed  Google Scholar 

  8. Aliberti S, Di Pasquale M, Zanaboni AM, Cosentini R, Brambilla AM, Seghezzi S et al (2012) Stratifying risk factors for multidrug-resistant pathogens in hospitalized patients coming from the community with pneumonia. Clin Infect Dis 54(4):470–478

    Article  PubMed  Google Scholar 

  9. Fang GD, Fine M, Orloff J, Arisumi D, Yu VL, Kapoor W et al (1990) New and emerging etiologies for community-acquired pneumonia with implications for therapy. A prospective multicenter study of 359 cases. Medicine 69(5):307–316

    Article  CAS  PubMed  Google Scholar 

  10. Steinhoff D, Lode H, Ruckdeschel G, Heidrich B, Rolfs A, Fehrenbach FJ et al (1996) Chlamydia pneumoniae as a cause of community-acquired pneumonia in hospitalized patients in Berlin. Clin Infect Dis 22(6):958–964

    Article  CAS  PubMed  Google Scholar 

  11. Lieberman D, Schlaeffer F, Boldur I, Lieberman D, Horowitz S, Friedman MG et al (1996) Multiple pathogens in adult patients admitted with community-acquired pneumonia: a one year prospective study of 346 consecutive patients. Thorax 51(2):179–184

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  12. Lim WS, Macfarlane JT, Boswell TC, Harrison TG, Rose D, Leinonen M et al (2001) Study of community acquired pneumonia aetiology (SCAPA) in adults admitted to hospital: implications for management guidelines. Thorax 56(4):296–301

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  13. Gutiérrez F, Masiá M, Rodríguez JC, Mirete C, Soldán B, Padilla S et al (2005) Community-acquired pneumonia of mixed etiology: prevalence, clinical characteristics, and outcome. Eur J Clin Microbiol Infect Dis 24(6):377–383

    Article  PubMed  Google Scholar 

  14. de Roux A, Ewig S, García E, Marcos MA, Mensa J, Lode H et al (2006) Mixed community-acquired pneumonia in hospitalised patients. Eur Respir J 27(4):795–800

    Article  PubMed  Google Scholar 

  15. Cillóniz C, Ewig S, Polverino E, Marcos MA, Esquinas C, Gabarrús A et al (2011) Microbial aetiology of community-acquired pneumonia and its relation to severity. Thorax 66(4):340–346

    Article  PubMed  Google Scholar 

  16. Cillóniz C, Ewig S, Ferrer M, Polverino E, Gabarrús A, Puig de la Bellacasa J et al (2011) Community-acquired polymicrobial pneumonia in the intensive care unit: aetiology and prognosis. Crit Care 15(5):R209

    Article  PubMed Central  PubMed  Google Scholar 

  17. Nagaoka K, Yanagihara K, Morinaga Y, Nakamura S, Harada T, Hasegawa H, Izumikawa K, Ishimatsu Y, Kakeya H, Nishimura M, Kohno S (2014) Prevotella intermedia induces severe bacteremic pneumococcal pneumonia in mice with upregulated platelet-activating factor receptor expression. Infect Immun 82(2):587–593

    Article  PubMed Central  PubMed  Google Scholar 

  18. Tikhomirova A, Kidd SP (2013) Haemophilus influenzae and Streptococcus pneumoniae: living together in a biofilm. Pathog Dis 69(2):114–126

    Article  CAS  PubMed  Google Scholar 

  19. Perez AC, Pang B, King LB, Tan L, Murrah KA, Reimche JL, Wren JT, Richardson SH, Ghandi U, Swords WE (2014) Residence of Streptococcus pneumoniae and Moraxella catarrhalis within polymicrobial biofilm promotes antibiotic resistance and bacterial persistence in vivo. Pathog Dis 70(3):280–288

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  20. Weimer KE, Juneau RA, Murrah KA, Pang B, Armbruster CE, Richardson SH, Swords WE (2011) Divergent mechanisms for passive pneumococcal resistance to β-lactam antibiotics in the presence of Haemophilus influenzae. J Infect Dis 203(4):549–555

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  21. Margolis E, Yates A, Levin BR (2010) The ecology of nasal colonization of Streptococcus pneumoniae, Haemophilus influenzae and Staphylococcus aureus: the role of competition and interactions with host’s immune response. BMC Microbiol 10:59

    Article  PubMed Central  PubMed  Google Scholar 

  22. Fine MJ, Auble TE, Yealy DM, Hanusa BH, Weissfeld LA, Singer DE et al (1997) A prediction rule to identify low-risk patients with community-acquired pneumonia. N Engl J Med 336(4):243–250

    Article  CAS  PubMed  Google Scholar 

  23. Lim WS, van der Eerden MM, Laing R, Boersma WG, Karalus N, Town GI et al (2003) Defining community-acquired pneumonia severity on presentation to hospital: an international derivation and validation study. Thorax 58(5):377–382

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  24. Chalmers JD, Taylor JK, Singanayagam A, Fleming GB, Akram AR, Mandal P, Choudhury G, Hill AT (2011) Epidemiology, antibiotic therapy, and clinical outcomes in health care-associated pneumonia: a UK cohort study. Clin Infect Dis 53(2):107–113

    Article  PubMed  Google Scholar 

  25. Minagawa S, Takayanagi N, Hara K, Takaku Y, Tsutiya Y, Hijikata N, Yamaji T, Tokunaga D, Saito H, Ubukata M, Kurashima K, Yanagisawa T, Sugita Y (2008) Clinical features of mixed infections in patients with Streptococcus pneumoniae pneumonia. Nihon Kokyuki Gakkai Zasshi 46(4):278–284

    PubMed  Google Scholar 

  26. Pettigrew MM, Gent JF, Revai K, Patel JA, Chonmaitree T (2008) Microbial interactions during upper respiratory tract infections. Emerg Infect Dis 14(10):1584–1591

    Article  PubMed Central  PubMed  Google Scholar 

  27. Arancibia F, Bauer TT, Ewig S, Mensa J, Gonzalez J, Niederman MS, Torres A (2002) Community-acquired pneumonia due to gram-negative bacteria and Pseudomonas aeruginosa: incidence, risk, and prognosis. Arch Intern Med 162(16):1849–1858

    Article  PubMed  Google Scholar 

  28. von Baum H, Welte T, Marre R, Suttorp N, Ewig S, CAPNETZ Study Group (2010) Community-acquired pneumonia through Enterobacteriaceae and Pseudomonas aeruginosa: diagnosis, incidence and predictors. Eur Respir J 35(3):598–605

    Article  Google Scholar 

  29. Mehta AJ, Yeligar SM, Elon L, Brown LA, Guidot DM (2013) Alcoholism causes alveolar macrophage zinc deficiency and immune dysfunction. Am J Respir Crit Care Med 188(6):716–723

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  30. Craven DE (2006) What is healthcare-associated pneumonia, and how should it be treated? Curr Opin Infect Dis 19:153–160

    PubMed  Google Scholar 

  31. Ehara N, Fukushima K, Kakeya H, Mukae H, Akamatsu S, Kageyama A, Saito A, Kohno S (2008) A novel method for rapid detection of Streptococcus pneumoniae antigen in sputum and its application in adult respiratory tract infections. J Med Microbiol 57(Pt 7):820–826

    Article  CAS  PubMed  Google Scholar 

  32. Fernández-Solá J, Junqué A, Estruch R, Monforte R, Torres A, Urbano-Márquez A (1995) High alcohol intake as a risk and prognostic factor for community-acquired pneumonia. Arch Intern Med 155(15):1649–1654

    Article  PubMed  Google Scholar 

  33. Kumar A, Ellis P, Arabi Y, Roberts D, Light B, Parrillo JE, Dodek P, Wood G, Kumar A, Simon D, Peters C, Ahsan M, Chateau D, Cooperative Antimicrobial Therapy of Septic Shock Database Research Group (2009) Initiation of inappropriate antimicrobial therapy results in a fivefold reduction of survival in human septic shock. Chest 136(5):1237–1248

    PubMed  Google Scholar 

  34. Riquelme R, Torres A, Rioseco ML, Ewig S, Cillóniz C, Riquelme M, Inzunza C, Polverino E, Gomez Y, Marcos MA, Contreras C, Gabarrús A, Fasce R (2011) Influenza pneumonia: a comparison between seasonal influenza virus and the H1N1 pandemic. Eur Respir J 38(1):106–111

    Article  CAS  PubMed  Google Scholar 

  35. von Baum H, Schweiger B, Welte T, Marre R, Suttorp N, Pletz MW, Ewig S, CAPNETZ Study Group (2011) How deadly is seasonal influenza-associated pneumonia? The German Competence Network for Community-Acquired Pneumonia. Eur Respir J 37(5):1151–1157

    Article  Google Scholar 

Download references

Funding

This study was conducted without external financial support.

Conflict of interest

Tadashi Ishida has received honoraria from Taisyo-Toyama Pharmaceutical Co., Ltd., Pfizer Japan Inc., and MSD K.K. The other authors have no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. Kumagai.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kumagai, S., Ishida, T., Tachibana, H. et al. Impact of bacterial coinfection on clinical outcomes in pneumococcal pneumonia. Eur J Clin Microbiol Infect Dis 34, 1839–1847 (2015). https://doi.org/10.1007/s10096-015-2421-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10096-015-2421-y

Keywords

Navigation