Skip to main content

Advertisement

Log in

Paper-based analytical devices for point-of-care infectious disease testing

  • Review
  • Published:
European Journal of Clinical Microbiology & Infectious Diseases Aims and scope Submit manuscript

Abstract

Paper-based devices provide an alternative technology for simple, low-cost, portable, and disposable or recyclable diagnostic tools for many applications, including clinical diagnosis, food quality control, and environmental monitoring. The present review focuses on new paper-based tests for point-of-care (POC) infectious disease testing. This review provides a brief presentation of the fabrication techniques and the main sample preparation procedures. Recent immunological and molecular testing formats based on new paper-based solutions which go beyond conventional lateral flow formats are also added. Emphasis is placed on how paper systems could be used for detecting whole and viable bacteria associated to infectious diseases. Paper has recently become attractive, since it is a ubiquitous and extremely cheap material. It is easy to store, easy to use, and is compatible with many (bio)chemical and (bio)medical applications. Paper absorbs and transports liquids by capillary force without additional mechanical assistance. Hence, paper-based analytical devices are promising and possibly game-changing, even if they still suffer from limitations, including accuracy and sensitivity. It is anticipated that, in the near future, with advances in fabrication procedures and associated analytical techniques, there will be a continuous flow of innovative paper-based diagnostics kits.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Liana DD, Raguse B, Gooding JJ, Chow E (2012) Recent advances in paper-based sensors. Sensors (Basel) 12:11505–11526

    Article  CAS  Google Scholar 

  2. Martinez AW, Phillips ST, Whitesides GM, Carrilho E (2010) Diagnostics for the developing world: microfluidic paper-based analytical devices. Anal Chem 82:3–10

    Article  CAS  PubMed  Google Scholar 

  3. Shah P, Zhu X, Li CZ (2013) Development of paper-based analytical kit for point-of-care testing. Expert Rev Mol Diagn 13:83–91

    Article  CAS  PubMed  Google Scholar 

  4. Parolo C, Merkoçi A (2013) Paper-based nanobiosensors for diagnostics. Chem Soc Rev 42:450–457

    Article  CAS  PubMed  Google Scholar 

  5. Fu E, Liang T, Houghtaling J, Ramachandran S, Ramsey SA, Lutz B, Yager P (2011) Enhanced sensitivity of lateral flow tests using a two-dimensional paper network format. Anal Chem 83:7941–7946

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  6. Hagerstwon M (2002) Goals, guidelines and principles for point-of-care testing. In: Kost GJ (ed) Principles and practice of point-of-care testing. Lippincott Williams and Wilkins, Philadelphia, pp 3–12

    Google Scholar 

  7. Tolonen U, Kallio M, Ryhänen J, Raatikainen T, Honkala V, Lesonen V (2007) A handheld nerve conduction measuring device in carpal tunnel syndrome. Acta Neurol Scand 115:390–397

    Article  CAS  PubMed  Google Scholar 

  8. Martinez AW, Phillips ST, Carrilho E, Thomas SW 3rd, Sindi H, Whitesides GM (2008) Simple telemedicine for developing regions: camera phones and paper-based microfluidic devices for real-time, off-site diagnosis. Anal Chem 80:3699–3707

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  9. Crowley TA, Pizziconi V (2005) Isolation of plasma from whole blood using planar microfilters for lab-on-a-chip applications. Lab Chip 5:922–929

    Article  CAS  PubMed  Google Scholar 

  10. VanDelinder V, Groisman A (2006) Separation of plasma from whole human blood in a continuous cross-flow in a molded microfluidic device. Anal Chem 78:3765–3771

    Article  CAS  PubMed  Google Scholar 

  11. Songjaroen T, Dungchai W, Chailapakul O, Henry CS, Laiwattanapaisal W (2012) Blood separation on microfluidic paper-based analytical devices. Lab Chip 12:3392–3398

    Article  CAS  PubMed  Google Scholar 

  12. Chin CD, Linder V, Sia SK (2007) Lab-on-a-chip devices for global health: past studies and future opportunities. Lab Chip 7:41–57

    Article  CAS  PubMed  Google Scholar 

  13. Dungchai W, Chailapakul O, Henry CS (2011) A low-cost, simple, and rapid fabrication method for paper-based microfluidics using wax screen-printing. Analyst 136:77–82

    Article  CAS  PubMed  Google Scholar 

  14. Li X, Ballerini DR, Shen W (2012) A perspective on paper-based microfluidics: current status and future trends. Biomicrofluidics 6:11301–1130113

    Article  PubMed  Google Scholar 

  15. Lu Y, Shi W, Jiang L, Qin J, Lin B (2009) Rapid prototyping of paper-based microfluidics with wax for low-cost, portable bioassay. Electrophoresis 30:1497–1500

    Article  CAS  PubMed  Google Scholar 

  16. Carrilho E, Martinez AW, Whitesides GM (2009) Understanding wax printing: a simple micropatterning process for paper-based microfluidics. Anal Chem 81:7091–7095

    Article  CAS  PubMed  Google Scholar 

  17. Yang X, Forouzan O, Brown TP, Shevkoplyas SS (2012) Integrated separation of blood plasma from whole blood for microfluidic paper-based analytical devices. Lab Chip 12:274–280

    Article  CAS  PubMed  Google Scholar 

  18. Abbas A, Brimer A, Slocik JM, Tian L, Naik RR, Singamaneni S (2013) Multifunctional analytical platform on a paper strip: separation, preconcentration, and subattomolar detection. Anal Chem 85:3977–3983

    Article  CAS  PubMed  Google Scholar 

  19. Chamoles NA, Blanco MB, Gaggioli D, Casentini C (2001) Hurler-like phenotype: enzymatic diagnosis in dried blood spots on filter paper. Clin Chem 47:2098–2102

    CAS  PubMed  Google Scholar 

  20. Zlateva KT, Maes P, Rahman M, Van Ranst M (2005) Chromatography paper strip sampling of enteric adenoviruses type 40 and 41 positive stool specimens. Virol J 2:6

    Article  PubMed Central  PubMed  Google Scholar 

  21. Mohammed MI, Desmulliez MP (2011) Lab-on-a-chip based immunosensor principles and technologies for the detection of cardiac biomarkers: a review. Lab Chip 11:569–595

    Article  CAS  PubMed  Google Scholar 

  22. Fu E, Liang T, Spicar-Mihalic P, Houghtaling J, Ramachandran S, Yager P (2012) Two-dimensional paper network format that enables simple multistep assays for use in low-resource settings in the context of malaria antigen detection. Anal Chem 84:4574–4579

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  23. Peeling RW, Holmes KK, Mabey D, Ronald A (2006) Rapid tests for sexually transmitted infections (STIs): the way forward. Sex Transm Infect 82(Suppl 5):v1–v6

    Article  PubMed  Google Scholar 

  24. Posthuma-Trumpie GA, Korf J, van Amerongen A (2009) Lateral flow (immuno)assay: its strengths, weaknesses, opportunities and threats. A literature survey. Anal Bioanal Chem 393:569–582

    Article  CAS  PubMed  Google Scholar 

  25. Fu E, Lutz B, Kauffman P, Yager P (2010) Controlled reagent transport in disposable 2D paper networks. Lab Chip 10:918–920

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  26. Osborn JL, Lutz B, Fu E, Kauffman P, Stevens DY, Yager P (2010) Microfluidics without pumps: reinventing the T-sensor and H-filter in paper networks. Lab Chip 10:2659–2665

    Article  CAS  PubMed  Google Scholar 

  27. Apilux A, Ukita Y, Chikae M, Chailapakul O, Takamura Y (2013) Development of automated paper-based devices for sequential multistep sandwich enzyme-linked immunosorbent assays using inkjet printing. Lab Chip 13:126–135

    Article  CAS  PubMed  Google Scholar 

  28. Martinez AW, Phillips ST, Whitesides GM (2008) Three-dimensional microfluidic devices fabricated in layered paper and tape. Proc Natl Acad Sci U S A 105:19606–19611

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  29. Martinez AW, Phillips ST, Butte MJ, Whitesides GM (2007) Patterned paper as a platform for inexpensive, low-volume, portable bioassays. Angew Chem Int Ed Engl 46:1318–1320

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  30. Fenton EM, Mascarenas MR, López GP, Sibbett SS (2009) Multiplex lateral-flow test strips fabricated by two-dimensional shaping. ACS Appl Mater Interfaces 1:124–129

    Article  CAS  PubMed  Google Scholar 

  31. Abe K, Kotera K, Suzuki K, Citterio D (2010) Inkjet-printed paperfluidic immuno-chemical sensing device. Anal Bioanal Chem 398:885–893

    Article  CAS  PubMed  Google Scholar 

  32. Li X, Tian J, Shen W (2010) Quantitative biomarker assay with microfluidic paper-based analytical devices. Anal Bioanal Chem 396:495–501

    Article  CAS  PubMed  Google Scholar 

  33. Dungchai W, Chailapakul O, Henry CS (2010) Use of multiple colorimetric indicators for paper-based microfluidic devices. Anal Chim Acta 674:227–233

    Article  CAS  PubMed  Google Scholar 

  34. Wang W, Wu WY, Wang W, Zhu JJ (2010) Tree-shaped paper strip for semiquantitative colorimetric detection of protein with self-calibration. J Chromatogr A 1217:3896–3899

    Article  CAS  PubMed  Google Scholar 

  35. Carrilho E, Phillips ST, Vella SJ, Martinez AW, Whitesides GM (2009) Paper microzone plates. Anal Chem 81:5990–5998

    Article  CAS  PubMed  Google Scholar 

  36. Veigas B, Jacob JM, Costa MN, Santos DS, Viveiros M, Inácio J, Martins R, Barquinha P, Fortunato E, Baptista PV (2012) Gold on paper-paper platform for Au-nanoprobe TB detection. Lab Chip 12:4802–4808

    Article  CAS  PubMed  Google Scholar 

  37. Cheng CM, Martinez AW, Gong J, Mace CR, Phillips ST, Carrilho E, Mirica KA, Whitesides GM (2010) Paper-based ELISA. Angew Chem Int Ed Engl 49:4771–4774

    Article  CAS  PubMed  Google Scholar 

  38. He Y, Zhang S, Zhang X, Baloda M, Gurung AS, Xu H, Zhang X, Liu G (2011) Ultrasensitive nucleic acid biosensor based on enzyme-gold nanoparticle dual label and lateral flow strip biosensor. Biosens Bioelectron 26:2018–2024

    Article  CAS  PubMed  Google Scholar 

  39. Silva LB, Veigas B, Doria G, Costa P, Inácio J, Martins R, Fortunato E, Baptista PV (2011) Portable optoelectronic biosensing platform for identification of mycobacteria from the Mycobacterium tuberculosis complex. Biosens Bioelectron 26:2012–2017

    Article  CAS  PubMed  Google Scholar 

  40. Hossain SM, Ozimok C, Sicard C, Aguirre SD, Ali MM, Li Y, Brennan JD (2012) Multiplexed paper test strip for quantitative bacterial detection. Anal Bioanal Chem 403:1567–1576

    Article  CAS  PubMed  Google Scholar 

  41. Funes-Huacca M, Wu A, Szepesvari E, Rajendran P, Kwan-Wong N, Razgulin A, Shen Y, Kagira J, Campbell R, Derda R (2012) Portable self-contained cultures for phage and bacteria made of paper and tape. Lab Chip 12:4269–4278

    Article  CAS  PubMed  Google Scholar 

  42. Jorgensen JH, Ferraro MJ (1998) Antimicrobial susceptibility testing: general principles and contemporary practices. Clin Infect Dis 26:973–980

    Article  CAS  PubMed  Google Scholar 

  43. Cira NJ, Ho JY, Dueck ME, Weibel DB (2012) A self-loading microfluidic device for determining the minimum inhibitory concentration of antibiotics. Lab Chip 12:1052–1059

    Article  CAS  PubMed  Google Scholar 

  44. Martinez AW (2011) Microfluidic paper-based analytical devices: from POCKET to paper-based ELISA. Bioanalysis 3:2589–2592

    Article  CAS  PubMed  Google Scholar 

  45. Tian J, Jarujamrus P, Li L, Li M, Shen W (2012) Strategy to enhance the wettability of bioacive paper-based sensors. ACS Appl Mater Interfaces 4:6573–6578

    Article  CAS  PubMed  Google Scholar 

  46. Whitesides GM, Wilding P (2012) Lab on a stamp: paper-based diagnostic tools. Interview by Molly Webster and Vikram Sheel Kumar. Clin Chem 58:956–958

    Article  PubMed  Google Scholar 

Download references

Acknowledgments

The author would like to warmly thank Catherine Saunier for her secretarial assistance and Pr. Alex Van Belkum for his external peer review.

Funding

None.

Conflict of interest

None.

Ethical approval

Not required.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to C. Rozand.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Rozand, C. Paper-based analytical devices for point-of-care infectious disease testing. Eur J Clin Microbiol Infect Dis 33, 147–156 (2014). https://doi.org/10.1007/s10096-013-1945-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10096-013-1945-2

Keywords

Navigation