Skip to main content
Log in

Antibiotic resistance, population structure and spread of Staphylococcus aureus in nursing homes in the Euregion Meuse-Rhine

  • Article
  • Published:
European Journal of Clinical Microbiology & Infectious Diseases Aims and scope Submit manuscript

Abstract

To determine the spread of Staphylococcus aureus within and between nursing home (NH) residents in the Euregion Meuse-Rhine, a cross-border region of the Netherlands and Germany, we investigated the prevalence of antibiotic resistance, genetic background and population structure of both methicillin-susceptible S. aureus (MSSA) and methicillin-resistant S. aureus (MRSA) isolates. A total of 245 S. aureus isolates were collected from NH residents. Susceptibility testing was performed with microbroth dilution. The genetic background was determined using spa typing, SCCmec typing, pulsed-field gel electrophoresis (PFGE) and multilocus sequence typing (MLST). Differences in the prevalence of resistance between the German and Dutch MSSA isolates were observed for the macrolides (15 % vs. 2 %, p = 0.003), clindamycin (15 % vs. 0 %, p = 0.003) and ciprofloxacin (34 % vs. 25 %). The macrolide and ciprofloxacin resistance varied between the NHs, while trimethoprim–sulfamethoxazole resistance was low in all residents. The MRSA prevalence was 3.5 % and <1 % among the German and Dutch NH residents, respectively (p = 0.005). The German MRSAs, isolated in 7 out of 10 NHs, belonged to ST22-MRSA-IV or ST225-MRSA-II. spa clonal complexes (spa-CCs) 015 and 002 were prevalent among the German MSSA isolates and spa-CCs 024 and 1716 were prevalent among the Dutch MSSA isolates. The antibiotic resistance of MSSA and the MRSA prevalence were significantly higher among the German NH residents. The spread of two MRSA clones was observed within and between the German NHs, but not between the Dutch and German NHs. Differences in the prevalence of resistance and the prevalence of MRSA between NHs on both sides of the border warrant the continuation of surveillance at a local level.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Lowy FD (1998) Staphylococcus aureus infections. N Engl J Med 339(8):520–532

    Article  PubMed  CAS  Google Scholar 

  2. Deurenberg RH, Stobberingh EE (2008) The evolution of Staphylococcus aureus. Infect Genet Evol 8(6):747–763

    Article  PubMed  CAS  Google Scholar 

  3. Cosgrove SE, Qi Y, Kaye KS, Harbarth S, Karchmer AW, Carmeli Y (2005) The impact of methicillin resistance in Staphylococcus aureus bacteremia on patient outcomes: mortality, length of stay, and hospital charges. Infect Control Hosp Epidemiol 26(2):166–174

    Article  PubMed  Google Scholar 

  4. Cosgrove SE, Sakoulas G, Perencevich EN, Schwaber MJ, Karchmer AW, Carmeli Y (2003) Comparison of mortality associated with methicillin-resistant and methicillin-susceptible Staphylococcus aureus bacteremia: a meta-analysis. Clin Infect Dis 36(1):53–59

    Article  PubMed  Google Scholar 

  5. Barr B, Wilcox MH, Brady A, Parnell P, Darby B, Tompkins D (2007) Prevalence of methicillin-resistant Staphylococcus aureus colonization among older residents of care homes in the United Kingdom. Infect Control Hosp Epidemiol 28(7):853–859

    Article  PubMed  Google Scholar 

  6. von Baum H, Schmidt C, Svoboda D, Bock-Hensley O, Wendt C (2002) Risk factors for methicillin-resistant Staphylococcus aureus carriage in residents of German nursing homes. Infect Control Hosp Epidemiol 23(9):511–515

    Article  Google Scholar 

  7. Verkade E, Bosch T, Hendriks Y, Kluytmans J (2012) Outbreak of methicillin-resistant Staphylococcus aureus ST398 in a Dutch nursing home. Infect Control Hosp Epidemiol 33(6):624–626

    Article  PubMed  Google Scholar 

  8. European Centre for Disease Prevention and Control (ECDC) (2010) Antimicrobial resistance surveillance in Europe 2009. Annual report of the European Antimicrobial Resistance Surveillance Network (EARS-Net). ECDC, Stockholm

    Google Scholar 

  9. Deurenberg RH, Nulens E, Valvatne H, Sebastian S, Driessen C, Craeghs J, De Brauwer E, Heising B, Kraat YJ, Riebe J, Stals FS, Trienekens TA, Scheres J, Friedrich AW, van Tiel FH, Beisser PS, Stobberingh EE (2009) Cross-border dissemination of methicillin-resistant Staphylococcus aureus, Euregio Meuse-Rhin region. Emerg Infect Dis 15(5):727–734

    Article  PubMed  CAS  Google Scholar 

  10. European Committee on Antimicrobial Susceptibility Testing (EUCAST) (2011) Breakpoint tables for interpretation of MICs and zone diameters. Version 1.3, January 5, 2011

  11. Fuchs PC, Jones RN, Barry AL (1990) Interpretive criteria for disk diffusion susceptibility testing of mupirocin, a topical antibiotic. J Clin Microbiol 28(3):608–609

    PubMed  CAS  Google Scholar 

  12. Jorgensen JH, Crawford SA, McElmeel ML, Fiebelkorn KR (2004) Detection of inducible clindamycin resistance of staphylococci in conjunction with performance of automated broth susceptibility testing. J Clin Microbiol 42(4):1800–1802

    Article  PubMed  CAS  Google Scholar 

  13. Donker GA, Deurenberg RH, Driessen C, Sebastian S, Nys S, Stobberingh EE (2009) The population structure of Staphylococcus aureus among general practice patients from The Netherlands. Clin Microbiol Infect 15(2):137–143

    Article  PubMed  CAS  Google Scholar 

  14. Schouls LM, Spalburg EC, van Luit M, Huijsdens XW, Pluister GN, van Santen-Verheuvel MG, van der Heide HG, Grundmann H, Heck ME, de Neeling AJ (2009) Multiple-locus variable number tandem repeat analysis of Staphylococcus aureus: comparison with pulsed-field gel electrophoresis and spa-typing. PLoS One 4(4):e5082

    Article  PubMed  Google Scholar 

  15. Enright MC, Day NP, Davies CE, Peacock SJ, Spratt BG (2000) Multilocus sequence typing for characterization of methicillin-resistant and methicillin-susceptible clones of Staphylococcus aureus. J Clin Microbiol 38(3):1008–1015

    PubMed  CAS  Google Scholar 

  16. Deurenberg RH, Vink C, Oudhuis GJ, Mooij JE, Driessen C, Coppens G, Craeghs J, De Brauwer E, Lemmen S, Wagenvoort H, Friedrich AW, Scheres J, Stobberingh EE (2005) Different clonal complexes of methicillin-resistant Staphylococcus aureus are disseminated in the Euregio Meuse-Rhine region. Antimicrob Agents Chemother 49(10):4263–4271

    Article  PubMed  CAS  Google Scholar 

  17. Valvatne H, Rijnders MI, Budimir A, Boumans ML, de Neeling AJ, Beisser PS, Stobberingh EE, Deurenberg RH (2009) A rapid, 2-well, multiplex real-time polymerase chain reaction assay for the detection of SCCmec types I to V in methicillin-resistant Staphylococcus aureus. Diagn Microbiol Infect Dis 65(4):384–391

    Article  PubMed  CAS  Google Scholar 

  18. Mulvey MR, Chui L, Ismail J, Louie L, Murphy C, Chang N, Alfa M; Canadian Committee for the Standardization of Molecular Methods (2001) Development of a Canadian standardized protocol for subtyping methicillin-resistant Staphylococcus aureus using pulsed-field gel electrophoresis. J Clin Microbiol 39(10):3481–3485

    Article  PubMed  CAS  Google Scholar 

  19. Tenover FC, Arbeit RD, Goering RV, Mickelsen PA, Murray BE, Persing DH, Swaminathan B (1995) Interpreting chromosomal DNA restriction patterns produced by pulsed-field gel electrophoresis: criteria for bacterial strain typing. J Clin Microbiol 33(9):2233–2239

    PubMed  CAS  Google Scholar 

  20. Narum SR (2006) Beyond Bonferroni: less conservative analyses for conservation genetics. Conserv Genet 7:783–787

    Article  CAS  Google Scholar 

  21. Daeschlein G, Assadian O, Rangous I, Kramer A (2006) Risk factors for Staphylococcus aureus nasal carriage in residents of three nursing homes in Germany. J Hosp Infect 63(2):216–220

    Article  PubMed  CAS  Google Scholar 

  22. Karabay O, Otkun MT, Yavuz MT, Otkun M (2006) Nasal carriage of methicillin-resistant and methicillin-susceptible Staphylococcus aureus in nursing home residents in Bolu, Turkey. West Indian Med J 55(3):183–187

    Article  PubMed  CAS  Google Scholar 

  23. Lasseter G, Charlett A, Lewis D, Donald I, Howell-Jones R, McNulty CA (2010) Staphylococcus aureus carriage in care homes: identification of risk factors, including the role of dementia. Epidemiol Infect 138(5):686–696

    Article  PubMed  CAS  Google Scholar 

  24. Poeppl W, Tobudic S, Lingscheid T, Plasenzotti R, Kozakowski N, Lagler H, Georgopoulos A, Burgmann H (2011) Daptomycin, fosfomycin, or both for treatment of methicillin-resistant Staphylococcus aureus osteomyelitis in an experimental rat model. Antimicrob Agents Chemother 55(11):4999–5003

    Article  PubMed  CAS  Google Scholar 

  25. Woltering R, Hoffmann G, Daniels-Haardt I, Gastmeier P, Chaberny IF (2008) MRSA-Prävalenz in medizinischen und pflegerischen Einrichtungen eines Landkreises. Dtsch Med Wochenschr 133:999–1003

    Article  PubMed  CAS  Google Scholar 

  26. Greenland K, Rijnders MI, Mulders M, Haenen A, Spalburg E, van de Kassteele J, de Neeling A, Stobberingh E (2011) Low prevalence of methicillin-resistant Staphylococcus aureus in Dutch nursing homes. J Am Geriatr Soc 59(4):768–769

    Article  PubMed  Google Scholar 

  27. Neuhaus B, Bocter N, Braulke Ch, Heuck C, Witte W (2002) Studie zum Vorkommen von Methicillin-resistenten Staphylococcus aureus in Alten- und Altenpflegeheimen in Nordrhein-Westfalen. Bundesgesundheitsbl Gesundheitsforsch Gesundheitsschutz 45:894–904

    Article  Google Scholar 

  28. Robert Koch-Institut. Epidemiologisches Bulletin Nr. 26. 4 July 2011

  29. Coombs GW, Pearson JC, O’Brien FG, Murray RJ, Grubb WB, Christiansen KJ (2006) Methicillin-resistant Staphylococcus aureus clones, Western Australia. Emerg Infect Dis 12(2):241–247

    Article  PubMed  Google Scholar 

  30. Rijnders MI, Deurenberg RH, Boumans ML, Hoogkamp-Korstanje JA, Beisser PS; Antibiotic Resistance Surveillance Group, Stobberingh EE (2009) Population structure of Staphylococcus aureus strains isolated from intensive care unit patients in the Netherlands over an 11-year period (1996 to 2006). J Clin Microbiol 47(12):4090–4095

    Article  PubMed  CAS  Google Scholar 

  31. Grundmann H, Aanensen DM, van den Wijngaard CC, Spratt BG, Harmsen D, Friedrich AW; European Staphylococcal Reference Laboratory Working Group (2010) Geographic distribution of Staphylococcus aureus causing invasive infections in Europe: a molecular-epidemiological analysis. PLoS Med 7(1):e1000215

    Article  PubMed  Google Scholar 

Download references

Acknowledgments

Ethical approval for this project was granted by the Medical Ethics committee of the Maastricht University Medical Centre (MUMC), reference number: 07-4-012.4/pl. Written consent was obtained from all participants or their legal representatives.

Sponsors’ role

This project was financially supported by: Provincie Limburg, the Netherlands; Ministerium für Wirtschaft, Energie, Bauen, Wohnen und Verkehr des Landes Nordrhein-Westfalen, Germany; Ministerium der Deutschsprachige Gemeinschaft Belgiens, Belgium; Provincie Limburg, Belgium; Wallonie, Belgium; Rheinland-Westfalen, Germany; Interreg and the Euregio Maas-Rijn with support of the European Regional Development Fund (EFRO).

The funding institutions were not involved in any part of this study.

Conflict of interest

None to declare.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to E. E. Stobberingh.

Rights and permissions

Reprints and permissions

About this article

Cite this article

van der Donk, C.F.M., Schols, J.M.G.A., Schneiders, V. et al. Antibiotic resistance, population structure and spread of Staphylococcus aureus in nursing homes in the Euregion Meuse-Rhine. Eur J Clin Microbiol Infect Dis 32, 1483–1489 (2013). https://doi.org/10.1007/s10096-013-1901-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10096-013-1901-1

Keywords

Navigation