Skip to main content

Advertisement

Log in

High abundance and diversity of antimicrobial resistance determinants among early vancomycin-resistant Enterococcus faecium in Poland

  • Article
  • Published:
European Journal of Clinical Microbiology & Infectious Diseases Aims and scope Submit manuscript

Abstract

The purpose of this study was to investigate the clonal structure, antimicrobial resistance phenotypes and their determinants among early vancomycin-resistant Enterococcus faecium (VREm) isolates in Poland. Two hundred and eighty-one VREm isolates collected between 1997 and 2005 were studied. VREm isolates were characterised by multilocus sequence typing (MLST). The presence of antimicrobial resistance determinants, transposon-specific genes, IS16 and esp Efm was checked by polymerase chain reaction (PCR). Ciprofloxacin and ampicillin resistance determinants were investigated by sequencing. Two hundred and twenty-two (79 %) and 59 (21 %) VREm isolates were vanA- and vanB-positive, respectively. Among 135 representative isolates, MLST yielded 33 different sequence types (STs), of which 29 were characteristic of hospital-associated E. faecium; 128 (94.8 %) and 123 (91.1 %) isolates harboured the IS16 and esp Efm genes, and all 135 isolates were resistant to ciprofloxacin and ampicillin. Resistance to tetracycline (71.1 % isolates) was mostly associated with tetM (75.0 %) and the concomitant presence of the Tn916 integrase gene. High-level resistance to streptomycin (93.3 % of isolates) and high-level resistance to gentamicin (94.1 % of isolates) were due to ant(6′)-Ia and aac(6′)-Ie-aph(2″) genes, respectively, the latter of which is known to be located on various Tn4001-type transposons. Fifteen combinations of mutations in the quinolone-determining regions of GyrA and ParC were identified, including changes not previously reported, such as S83F and A84P in GyrA. Twenty-three variants of the penicillin-binding protein PBP5 occurred in the studied group, and novel insertions at amino acid positions 433 and 568 were identified. This analysis revealed the predominance of hospital-associated strains of E. faecium, carrying an abundant and divergent range of resistance determinants among early VREm isolates in Poland.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Sydnor ER, Perl TM (2011) Hospital epidemiology and infection control in acute-care settings. Clin Microbiol Rev 24:141–173

    Article  PubMed  CAS  Google Scholar 

  2. Leclercq R, Derlot E, Duval J, Courvalin P (1988) Plasmid-mediated resistance to vancomycin and teicoplanin in Enterococcus faecium. N Engl J Med 319:157–161

    Article  PubMed  CAS  Google Scholar 

  3. Uttley AH, Collins CH, Naidoo J, George RC (1988) Vancomycin-resistant enterococci. Lancet 1:57–58

    Article  PubMed  CAS  Google Scholar 

  4. Sahm DF, Kissinger J, Gilmore MS, Murray PR, Mulder R, Solliday J, Clarke B (1989) In vitro susceptibility studies of vancomycin-resistant Enterococcus faecalis. Antimicrob Agents Chemother 33:1588–1591

    Article  PubMed  CAS  Google Scholar 

  5. Bonten MJ, Willems R, Weinstein RA (2001) Vancomycin-resistant enterococci: why are they here, and where do they come from? Lancet Infect Dis 1:314–325

    Article  PubMed  CAS  Google Scholar 

  6. Ramsey AM, Zilberberg MD (2009) Secular trends of hospitalization with vancomycin-resistant enterococcus infection in the United States, 2000–2006. Infect Control Hosp Epidemiol 30:184–186

    Article  PubMed  Google Scholar 

  7. Hidron AI, Edwards JR, Patel J, Horan TC, Sievert DM, Pollock DA, Fridkin SK; National Healthcare Safety Network Team; Participating National Healthcare Safety Network Facilities (2008) NHSN annual update: antimicrobial-resistant pathogens associated with healthcare-associated infections: annual summary of data reported to the National Healthcare Safety Network at the Centers for Disease Control and Prevention, 2006–2007. Infect Control Hosp Epidemiol 29:996–1011, Erratum in: Infect Control Hosp Epidemiol 30:107

    Article  PubMed  Google Scholar 

  8. Werner G, Coque TM, Hammerum AM, Hope R, Hryniewicz W, Johnson A, Klare I, Kristinsson KG, Leclercq R, Lester CH, Lillie M, Novais C, Olsson-Liljequist B, Peixe LV, Sadowy E, Simonsen GS, Top J, Vuopio-Varkila J, Willems RJ, Witte W, Woodford N (2008) Emergence and spread of vancomycin resistance among enterococci in Europe. Euro Surveill 13. pii: 19046

  9. Arias CA, Murray BE (2008) Emergence and management of drug-resistant enterococcal infections. Expert Rev Anti Infect Ther 6:637–655

    Article  PubMed  CAS  Google Scholar 

  10. Klare I, Konstabel C, Badstübner D, Werner G, Witte W (2003) Occurrence and spread of antibiotic resistances in Enterococcus faecium. Int J Food Microbiol 88:269–290

    Article  PubMed  CAS  Google Scholar 

  11. Sood S, Malhotra M, Das BK, Kapil A (2008) Enterococcal infections & antimicrobial resistance. Indian J Med Res 128:111–121

    PubMed  CAS  Google Scholar 

  12. Courvalin P (2006) Vancomycin resistance in gram-positive cocci. Clin Infect Dis 42(Suppl 1):S25–S34

    Article  PubMed  CAS  Google Scholar 

  13. Chow JW (2000) Aminoglycoside resistance in enterococci. Clin Infect Dis 31:586–589

    Article  PubMed  CAS  Google Scholar 

  14. Hodel-Christian SL, Murray BE (1991) Characterization of the gentamicin resistance transposon Tn5281 from Enterococcus faecalis and comparison to staphylococcal transposons Tn4001 and Tn4031. Antimicrob Agents Chemother 35:1147–1152

    Article  PubMed  CAS  Google Scholar 

  15. Chopra I, Roberts M (2001) Tetracycline antibiotics: mode of action, applications, molecular biology, and epidemiology of bacterial resistance. Microbiol Mol Biol Rev 65:232–260

    Article  PubMed  CAS  Google Scholar 

  16. Roberts MC, Sutcliffe J, Courvalin P, Jensen LB, Rood J, Seppala H (1999) Nomenclature for macrolide and macrolide–lincosamide–streptogramin B resistance determinants. Antimicrob Agents Chemother 43:2823–2830

    PubMed  CAS  Google Scholar 

  17. el Amin NA, Jalal S, Wretlind B (1999) Alterations in GyrA and ParC associated with fluoroquinolone resistance in Enterococcus faecium. Antimicrob Agents Chemother 43:947–949

    PubMed  Google Scholar 

  18. Zorzi W, Zhou XY, Dardenne O, Lamotte J, Raze D, Pierre J, Gutmann L, Coyette J (1996) Structure of the low-affinity penicillin-binding protein 5 PBP5fm in wild-type and highly penicillin-resistant strains of Enterococcus faecium. J Bacteriol 178:4948–4957

    PubMed  CAS  Google Scholar 

  19. Willems RJ, Top J, van Santen M, Robinson DA, Coque TM, Baquero F, Grundmann H, Bonten MJ (2005) Global spread of vancomycin-resistant Enterococcus faecium from distinct nosocomial genetic complex. Emerg Infect Dis 11:821–828

    Article  PubMed  CAS  Google Scholar 

  20. Willems RJ, Bonten MJ (2007) Glycopeptide-resistant enterococci: deciphering virulence, resistance and epidemicity. Curr Opin Infect Dis 20:384–390

    Article  PubMed  CAS  Google Scholar 

  21. Top J, Willems R, van der Velden S, Asbroek M, Bonten M (2008) Emergence of clonal complex 17 Enterococcus faecium in The Netherlands. J Clin Microbiol 46:214–219

    Article  PubMed  Google Scholar 

  22. Leavis HL, Willems RJ, Top J, Bonten MJ (2006) High-level ciprofloxacin resistance from point mutations in gyrA and parC confined to global hospital-adapted clonal lineage CC17 of Enterococcus faecium. J Clin Microbiol 44:1059–1064

    Article  PubMed  CAS  Google Scholar 

  23. Werner G, Fleige C, Ewert B, Laverde-Gomez JA, Klare I, Witte W (2010) High-level ciprofloxacin resistance among hospital-adapted Enterococcus faecium (CC17). Int J Antimicrob Agents 35:119–125

    Article  PubMed  CAS  Google Scholar 

  24. Top J, Sinnige JC, Majoor EA, Bonten MJ, Willems RJ, van Schaik W (2011) The recombinase IntA is required for excision of esp-containing ICEEfm1 in Enterococcus faecium. J Bacteriol 193:1003–1006

    Article  PubMed  CAS  Google Scholar 

  25. Werner G, Fleige C, Geringer U, van Schaik W, Klare I, Witte W (2011) IS element IS16 as a molecular screening tool to identify hospital-associated strains of Enterococcus faecium. BMC Infect Dis 11:80

    Article  PubMed  Google Scholar 

  26. Willems RJ, Homan W, Top J, van Santen-Verheuvel M, Tribe D, Manzioros X, Gaillard C, Vandenbroucke-Grauls CM, Mascini EM, van Kregten E, van Embden JD, Bonten MJ (2001) Variant esp gene as a marker of a distinct genetic lineage of vancomycin-resistant Enterococcus faecium spreading in hospitals. Lancet 357:853–855

    Article  PubMed  CAS  Google Scholar 

  27. Hryniewicz W, Szczypa K, Bronk M, Samet A, Hellmann A, Trzcinski K (1999) First report of vancomycin-resistant Enterococcus faecium isolated in Poland. Clin Microbiol Infect 5:503–505

    Article  PubMed  CAS  Google Scholar 

  28. Samet A, Bronk M, Hellmann A, Kur J (1999) Isolation and epidemiological study of vancomycin-resistant Enterococcus faecium from patients of a haematological unit in Poland. J Hosp Infect 41:137–143

    Article  PubMed  CAS  Google Scholar 

  29. Kawalec M, Gniadkowski M, Hryniewicz W (2000) Outbreak of vancomycin-resistant enterococci in a hospital in Gdansk, Poland, due to horizontal transfer of different Tn1546-like transposon variants and clonal spread of several strains. J Clin Microbiol 38:3317–3322

    PubMed  CAS  Google Scholar 

  30. Kawalec M, Gniadkowski M, Zielińska U, Kłos W, Hryniewicz W (2001) Vancomycin-resistant Enterococcus faecium strain carrying the vanB2 gene variant in a Polish hospital. J Clin Microbiol 39:811–815

    Article  PubMed  CAS  Google Scholar 

  31. Kawalec M, Gniadkowski M, Zaleska M, Ozorowski T, Konopka L, Hryniewicz W (2001) Outbreak of vancomycin-resistant Enterococcus faecium of the phenotype VanB in a hospital in Warsaw, Poland: probable transmission of the resistance determinants into an endemic vancomycin-susceptible strain. J Clin Microbiol 39:1781–1787

    Article  PubMed  CAS  Google Scholar 

  32. Kawalec M, Gniadkowski M, Kedzierska J, Skotnicki A, Fiett J, Hryniewicz W (2001) Selection of a teicoplanin-resistant Enterococcus faecium mutant during an outbreak caused by vancomycin-resistant enterococci with the vanB phenotype. J Clin Microbiol 39:4274–4282

    Article  PubMed  CAS  Google Scholar 

  33. Kawalec M, Kedzierska J, Gajda A, Sadowy E, Wegrzyn J, Naser S, Skotnicki AB, Gniadkowski M, Hryniewicz W (2007) Hospital outbreak of vancomycin-resistant enterococci caused by a single clone of Enterococcus raffinosus and several clones of Enterococcus faecium. Clin Microbiol Infect 13:893–901

    Article  PubMed  CAS  Google Scholar 

  34. Clinical and Laboratory Standards Institute (CLSI) (2010) Performance standards for antimicrobial susceptibility testing; 20th informational supplement. CLSI document M100-S20. CLSI, Wayne, PA

  35. European Committee on Antimicrobial Susceptibility Testing (EUCAST) (2013) Breakpoint tables for interpretation of MICs and zone diameters. Version 3.0, 2013. Available online at: http://www.eucast.org/fileadmin/src/media/PDFs/EUCAST_files/Disk_test_documents/EUCAST_Breakpoint_table_v_3.0.pdf. Last accessed 20th January 2013

  36. Homan WL, Tribe D, Poznanski S, Li M, Hogg G, Spalburg E, Van Embden JD, Willems RJ (2002) Multilocus sequence typing scheme for Enterococcus faecium. J Clin Microbiol 40:1963–1971

    Article  PubMed  CAS  Google Scholar 

  37. Feil EJ, Li BC, Aanensen DM, Hanage WP, Spratt BG (2004) eBURST: inferring patterns of evolutionary descent among clusters of related bacterial genotypes from multilocus sequence typing data. J Bacteriol 186:1518–1530

    Article  PubMed  CAS  Google Scholar 

  38. Vankerckhoven V, Van Autgaerden T, Vael C, Lammens C, Chapelle S, Rossi R, Jabes D, Goossens H (2004) Development of a multiplex PCR for the detection of asa1, gelE, cylA, and hyl genes in enterococci and survey for virulence determinants among European hospital isolates of Enterococcus faecium. J Clin Microbiol 42:4473–4479

    Article  PubMed  CAS  Google Scholar 

  39. Klare I, Konstabel C, Mueller-Bertling S, Werner G, Strommenger B, Kettlitz C, Borgmann S, Schulte B, Jonas D, Serr A, Fahr AM, Eigner U, Witte W (2005) Spread of ampicillin/vancomycin-resistant Enterococcus faecium of the epidemic-virulent clonal complex-17 carrying the genes esp and hyl in German hospitals. Eur J Clin Microbiol Infect Dis 24:815–825

    Article  PubMed  CAS  Google Scholar 

  40. Doherty N, Trzcinski K, Pickerill P, Zawadzki P, Dowson CG (2000) Genetic diversity of the tet(M) gene in tetracycline-resistant clonal lineages of Streptococcus pneumoniae. Antimicrob Agents Chemother 44:2979–2984

    Article  PubMed  CAS  Google Scholar 

  41. Sutcliffe J, Grebe T, Tait-Kamradt A, Wondrack L (1996) Detection of erythromycin-resistant determinants by PCR. Antimicrob Agents Chemother 40:2562–2566

    PubMed  CAS  Google Scholar 

  42. Vakulenko SB, Donabedian SM, Voskresenskiy AM, Zervos MJ, Lerner SA, Chow JW (2003) Multiplex PCR for detection of aminoglycoside resistance genes in enterococci. Antimicrob Agents Chemother 47:1423–1426

    Article  PubMed  CAS  Google Scholar 

  43. Leelaporn A, Yodkamol K, Waywa D, Pattanachaiwit S (2008) A novel structure of Tn4001-truncated element, type V, in clinical enterococcal isolates and multiplex PCR for detecting aminoglycoside resistance genes. Int J Antimicrob Agents 31:250–254

    Article  PubMed  CAS  Google Scholar 

  44. Shaw JH, Clewell DB (1985) Complete nucleotide sequence of macrolide–lincosamide–streptogramin B-resistance transposon Tn917 in Streptococcus faecalis. J Bacteriol 164:782–796

    PubMed  CAS  Google Scholar 

  45. Agersø Y, Pedersen AG, Aarestrup FM (2006) Identification of Tn5397-like and Tn916-like transposons and diversity of the tetracycline resistance gene tet(M) in enterococci from humans, pigs and poultry. J Antimicrob Chemother 57:832–839

    Article  PubMed  Google Scholar 

  46. Sadowy E, Matynia B, Hryniewicz W (2010) Population structure, virulence factors and resistance determinants of invasive, non-invasive and colonizing Streptococcus agalactiae in Poland. J Antimicrob Chemother 65:1907–1914

    Article  PubMed  CAS  Google Scholar 

  47. Hsieh SE, Hsu LL, Hsu WH, Chen CY, Chen HJ, Liao CT (2006) Importance of amino acid alterations and expression of penicillin-binding protein 5 to ampicillin resistance of Enterococcus faecium in Taiwan. Int J Antimicrob Agents 28:514–519

    Article  PubMed  CAS  Google Scholar 

  48. Willems RJL, Top J, van Schaik W, Leavis H, Bonten M, Sirén J, Hanage WP, Corander J (2012) Restricted gene flow among hospital subpopulations of Enterococcus faecium. MBio 3:e00151-12

    Article  PubMed  Google Scholar 

  49. Poeta P, Costa D, Igrejas G, Sáenz Y, Zarazaga M, Rodrigues J, Torres C (2007) Polymorphisms of the pbp5 gene and correlation with ampicillin resistance in Enterococcus faecium isolates of animal origin. J Med Microbiol 56:236–240

    Article  PubMed  CAS  Google Scholar 

  50. European Antimicrobial Surveillance System (EARS-Net) (2011) Antimicrobial resistancesurveillance in Europe. Annual report of the European Antimicrobial Resistance Surveillance Network (EARS-Net). http://www.ecdc.europa.eu/en/publications/Publications/antimicrobial-resistance-surveillance-europe-2011.pdf. Last accessed 12 March 2013

  51. Bourdon N, Fines-Guyon M, Thiolet JM, Maugat S, Coignard B, Leclercq R, Cattoir V (2011) Changing trends in vancomycin-resistant enterococci in French hospitals, 2001–08. J Antimicrob Chemother 66:713–721

    Article  PubMed  CAS  Google Scholar 

  52. Deshpande LM, Fritsche TR, Moet GJ, Biedenbach DJ, Jones RN (2007) Antimicrobial resistance and molecular epidemiology of vancomycin-resistant enterococci from North America and Europe: a report from the SENTRY antimicrobial surveillance program. Diagn Microbiol Infect Dis 58:163–170

    Article  PubMed  CAS  Google Scholar 

  53. López M, Cercenado E, Tenorio C, Ruiz-Larrea F, Torres C (2012) Diversity of clones and genotypes among vancomycin-resistant clinical Enterococcus isolates recovered in a Spanish hospital. Microb Drug Resist 18:484–491

    Article  PubMed  Google Scholar 

  54. Ko KS, Baek JY, Lee JY, Oh WS, Peck KR, Lee N, Lee WG, Lee K, Song JH (2005) Molecular characterization of vancomycin-resistant Enterococcus faecium isolates from Korea. J Clin Microbiol 43:2303–2306

    Article  PubMed  CAS  Google Scholar 

  55. Panesso D, Reyes J, Rincón S, Díaz L, Galloway-Peña J, Zurita J, Carrillo C, Merentes A, Guzmán M, Adachi JA, Murray BE, Arias CA (2010) Molecular epidemiology of vancomycin-resistant Enterococcus faecium: a prospective, multicenter study in South American hospitals. J Clin Microbiol 48:1562–1569

    Article  PubMed  CAS  Google Scholar 

  56. Nichol KA, Sill M, Laing NM, Johnson JL, Hoban DJ, Zhanel GG (2006) Molecular epidemiology of urinary tract isolates of vancomycin-resistant Enterococcus faecium from North America. Int J Antimicrob Agents 27:392–396

    Article  PubMed  CAS  Google Scholar 

  57. Oh WS, Ko KS, Song JH, Lee MY, Park S, Peck KR, Lee NY, Kim CK, Lee H, Kim SW, Chang HH, Kim YS, Jung SI, Son JS, Yeom JS, Ki HK, Woo GJ (2005) High rate of resistance to quinupristin–dalfopristin in Enterococcus faecium clinical isolates from Korea. Antimicrob Agents Chemother 49:5176–5178

    Article  PubMed  CAS  Google Scholar 

  58. Kuch A, Willems RJ, Werner G, Coque TM, Hammerum AM, Sundsfjord A, Klare I, Ruiz-Garbajosa P, Simonsen GS, van Luit-Asbroek M, Hryniewicz W, Sadowy E (2012) Insight into antimicrobial susceptibility and population structure of contemporary human Enterococcus faecalis isolates from Europe. J Antimicrob Chemother 67:551–558

    Article  PubMed  CAS  Google Scholar 

  59. Bouchillon SK, Hoban DJ, Johnson BM, Stevens TM, Dowzicky MJ, Wu DH, Bradford PA (2005) In vitro evaluation of tigecycline and comparative agents in 3049 clinical isolates: 2001 to 2002. Diagn Microbiol Infect Dis 51:291–295

    Article  PubMed  CAS  Google Scholar 

  60. Valdezate S, Labayru C, Navarro A, Mantecón MA, Ortega M, Coque TM, García M, Saéz-Nieto JA (2009) Large clonal outbreak of multidrug-resistant CC17 ST17 Enterococcus faecium containing Tn5382 in a Spanish hospital. J Antimicrob Chemother 63:17–20

    Article  PubMed  CAS  Google Scholar 

  61. Zapun A, Contreras-Martel C, Vernet T (2008) Penicillin-binding proteins and β-lactam resistance. FEMS Microbiol Rev 32:361–385

    Article  PubMed  CAS  Google Scholar 

  62. Mainardi JL, Legrand R, Arthur M, Schoot B, van Heijenoort J, Gutmann L (2000) Novel mechanism of beta-lactam resistance due to bypass of DD-transpeptidation in Enterococcus faecium. J Biol Chem 275:16490–16496

    Article  PubMed  CAS  Google Scholar 

  63. Mainardi JL, Morel V, Fourgeaud M, Cremniter J, Blanot D, Legrand R, Frehel C, Arthur M, Van Heijenoort J, Gutmann L (2002) Balance between two transpeptidation mechanisms determines the expression of beta-lactam resistance in Enterococcus faecium. J Biol Chem 277:35801–35807

    Article  PubMed  CAS  Google Scholar 

  64. Sacco E, Hugonnet JE, Josseaume N, Cremniter J, Dubost L, Marie A, Patin D, Blanot D, Rice LB, Mainardi JL, Arthur M (2010) Activation of the L,D-transpeptidation peptidoglycan cross-linking pathway by a metallo-D,D-carboxypeptidase in Enterococcus faecium. Mol Microbiol 75:874–885

    Article  PubMed  CAS  Google Scholar 

  65. Zhang X, Paganelli FL, Bierschenk D, Kuipers A, Bonten MJ, Willems RJ, van Schaik W (2012) Genome-wide identification of ampicillin resistance determinants in Enterococcus faecium. PLoS Genet 8:e1002804

    Article  PubMed  CAS  Google Scholar 

  66. Sauvage E, Kerff F, Fonzé E, Herman R, Schoot B, Marquette JP, Taburet Y, Prevost D, Dumas J, Leonard G, Stefanic P, Coyette J, Charlier P (2002) The 2.4-A crystal structure of the penicillin-resistant penicillin-binding protein PBP5fm from Enterococcus faecium in complex with benzylpenicillin. Cell Mol Life Sci 59:1223–1232

    Article  PubMed  CAS  Google Scholar 

  67. De Leener E, Martel A, Decostere A, Haesebrouck F (2004) Distribution of the erm(B) gene, tetracycline resistance genes, and Tn1545-like transposons in macrolide- and lincosamide-resistant enterococci from pigs and humans. Microb Drug Resist 10:341–345

    Article  PubMed  Google Scholar 

  68. Freitas AR, Coque TM, Novais C, Hammerum AM, Lester CH, Zervos MJ, Donabedian S, Jensen LB, Francia MV, Baquero F, Peixe L (2011) Human and swine hosts share vancomycin-resistant Enterococcus faecium CC17 and CC5 and Enterococcus faecalis CC2 clonal clusters harboring Tn1546 on indistinguishable plasmids. J Clin Microbiol 49:925–931

    Article  PubMed  CAS  Google Scholar 

  69. Rathnayake IU, Hargreaves M, Huygens F (2012) Antibiotic resistance and virulence traits in clinical and environmental Enterococcus faecalis and Enterococcus faecium isolates. Syst Appl Microbiol 35:326–333

    Article  PubMed  CAS  Google Scholar 

  70. Aarestrup FM, Agerso Y, Gerner-Smidt P, Madsen M, Jensen LB (2000) Comparison of antimicrobial resistance phenotypes and resistance genes in Enterococcus faecalis and Enterococcus faecium from humans in the community, broilers, and pigs in Denmark. Diagn Microbiol Infect Dis 37:127–137

    Article  PubMed  CAS  Google Scholar 

  71. Nishimoto Y, Kobayashi N, Alam MM, Ishino M, Uehara N, Watanabe N (2005) Analysis of the prevalence of tetracycline resistance genes in clinical isolates of Enterococcus faecalis and Enterococcus faecium in a Japanese hospital. Microb Drug Resist 11:146–153

    Article  PubMed  CAS  Google Scholar 

  72. Hegstad K, Mikalsen T, Coque TM, Werner G, Sundsfjord A (2010) Mobile genetic elements and their contribution to the emergence of antimicrobial resistant Enterococcus faecalis and Enterococcus faecium. Clin Microbiol Infect 16:541–554

    Article  PubMed  CAS  Google Scholar 

  73. Roberts AP, Mullany P (2011) Tn916-like genetic elements: a diverse group of modular mobile elements conferring antibiotic resistance. FEMS Microbiol Rev 35:856–871

    Article  PubMed  CAS  Google Scholar 

  74. Holden MT, Hauser H, Sanders M, Ngo TH, Cherevach I, Cronin A, Goodhead I, Mungall K, Quail MA, Price C, Rabbinowitsch E, Sharp S, Croucher NJ, Chieu TB, Mai NT, Diep TS, Chinh NT, Kehoe M, Leigh JA, Ward PN, Dowson CG, Whatmore AM, Chanter N, Iversen P, Gottschalk M, Slater JD, Smith HE, Spratt BG, Xu J, Ye C, Bentley S, Barrell BG, Schultsz C, Maskell DJ, Parkhill J (2009) Rapid evolution of virulence and drug resistance in the emerging zoonotic pathogen Streptococcus suis. PLoS One 4:e6072

    Article  PubMed  Google Scholar 

  75. Li X, Alvarez V, Harper WJ, Wang HH (2011) Persistent, toxin-antitoxin system-independent, tetracycline resistance-encoding plasmid from a dairy Enterococcus faecium isolate. Appl Environ Microbiol 77:7096–7103

    Article  PubMed  CAS  Google Scholar 

  76. del Campo R, Tenorio C, Rubio C, Castillo J, Torres C, Gómez-Lus R (2000) Aminoglycoside-modifying enzymes in high-level streptomycin and gentamicin resistant Enterococcus spp. in Spain. Int J Antimicrob Agents 15:221–226

    Article  PubMed  Google Scholar 

  77. Quiñones-Pérez D, Goñi P, Rubio MC, Baquero F, Gómez-Lus R, Del Campo R (2006) Genetic relatedness and antimicrobial resistance determinants among clinical isolates of enterococci from Cuba. Clin Microbiol Infect 12:793–797

    PubMed  Google Scholar 

  78. Emaneini M, Aligholi M, Aminshahi M (2008) Characterization of glycopeptides, aminoglycosides and macrolide resistance among Enterococcus faecalis and Enterococcus faecium isolates from hospitals in Tehran. Pol J Microbiol 57:173–178

    PubMed  CAS  Google Scholar 

  79. Ferretti JJ, Gilmore KS, Courvalin P (1986) Nucleotide sequence analysis of the gene specifying the bifunctional 6′-aminoglycoside acetyltransferase 2″-aminoglycoside phosphotransferase enzyme in Streptococcus faecalis and identification and cloning of gene regions specifying the two activities. J Bacteriol 167:631–638

    PubMed  CAS  Google Scholar 

  80. Rosvoll TC, Lindstad BL, Lunde TM, Hegstad K, Aasnaes B, Hammerum AM, Lester CH, Simonsen GS, Sundsfjord A, Pedersen T (2012) Increased high-level gentamicin resistance in invasive Enterococcus faecium is associated with aac(6′)Ie-aph(2″)Ia-encoding transferable megaplasmids hosted by major hospital-adapted lineages. FEMS Immunol Med Microbiol 66:166–176

    Article  PubMed  CAS  Google Scholar 

  81. Tanimoto K, Ike Y (2008) Complete nucleotide sequencing and analysis of the 65-kb highly conjugative Enterococcus faecium plasmid pMG1: identification of the transfer-related region and the minimum region required for replication. FEMS Microbiol Lett 288:186–195

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgements

We thank all the Polish microbiologists who sent VREm isolates to our laboratory, Magdalena Kawalec for the helpful advice, Rob Willems for sharing the BAPS results and assigning new alleles and STs, and Stephen Murchan for the critical reading of the manuscript. This publication made use of the Enterococcus faecium MLST website (http://efaecium.mlst.net/) hosted at Imperial College of the University of Oxford and funded by the Wellcome Trust. This work was supported by grant ACE from the European Union 6th Framework Programme under contract LSHE-CT-2007-037410, a complementary funding from the Ministry of Science and Higher Education, Poland (decision 937/6. PR UE/2009/7), by MIKROBANK funding from the Ministry of Science and Higher Education, Poland, and by grant NN401588540 from the Ministry of Science and Higher Education, Poland.

Conflict of interest

None to declare.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to E. Sadowy.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sadowy, E., Sieńko, A., Gawryszewska, I. et al. High abundance and diversity of antimicrobial resistance determinants among early vancomycin-resistant Enterococcus faecium in Poland. Eur J Clin Microbiol Infect Dis 32, 1193–1203 (2013). https://doi.org/10.1007/s10096-013-1868-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10096-013-1868-y

Keywords

Navigation