Skip to main content

Advertisement

Log in

Epworth sleepiness scale is associated with increased striatal dopamine uptake in Parkinson’s disease: a cross-sectional study

  • Original Article
  • Published:
Neurological Sciences Aims and scope Submit manuscript

Abstract

Purpose

A cross-sectional study was designed to investigate the possible association between Epworth sleepiness scale (ESS) scores and striatal dopamine uptake in the early stages of Parkinson’s disease (PD).

Methods

Two groups of PD patients (n = 464) and healthy controls (HC) (n = 162) were enrolled in the current study from the Parkinson’s progression markers initiative cohort (https://www.ppmi-info.org). All the subjects were evaluated for excessive daytime sleepiness (EDS) using the ESS. They also completed specific measures to be assessed for motor and non-motor symptoms, including cognitive, gait, autonomic, and olfactory dysfunction. Dopamine transporter (DaT) scans were used to identify dopamine transporter impairments. Spatial normalization for DaTscan imaging of participants was performed to reach consistent orientation.

Results

A significant correlation was found between ESS score and right putamen (P < 0.001; correlation coefficient = 0.186) and left putamen (P = 0.003; correlation coefficient = 0.139) dopamine uptake in PD patients. The same results were revealed after adjusted Pearson’s correlation for the effects of handedness, age, gender, and education. No significant correlation was found between the ESS score and the amount of caudate nucleus dopamine uptake in PD patients. Moreover, there was a significant association between caudate nucleus dopamine uptake and ESS score in neither PD patients nor HCs.

Conclusions

The results of our study suggest that increased dopaminergic function of putamen nuclei may be associated with ESS scores in the early stages of PD. Further studies are needed at different PD stages and evaluate PD progression as a possible confounder.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

Data Availability

Data used in the preparation of this article were obtained from the Parkinson’s Progression Markers Initiative (PPMI) database (www.ppmi-info.org/access-data-specimens/download-data). For up-to-date information on the study, visit www.ppmi-info.org.

References

  1. Poewe W, Seppi K, Tanner CM, Halliday GM, Brundin P, Volkmann J, Schrag A-E, Lang AE (2017) Nat. Rev. Dis 3(1):17013. https://doi.org/10.1038/nrdp.2017.13

    Article  Google Scholar 

  2. Abuga I, Oyungu J, Nyundo J (2023) Autonomic dysfunction and fatigue in Parkinson’s disease: a report from Kenya. Neur. Letters 2(1):47–50. https://doi.org/10.52547/nl.2.1.47

    Article  Google Scholar 

  3. van Deursen DN, van den Heuvel OA, Booij J, Berendse HW, Vriend C (2020) Autonomic failure in Parkinson’s disease is associated with striatal dopamine deficiencies. J Neurol 267(7):1922–1930. https://doi.org/10.1007/s00415-020-09785-5

    Article  PubMed  PubMed Central  Google Scholar 

  4. Stögbauer J, Rosar F, Dillmann U, Faßbender K, Ezziddin S, Spiegel J (2020) Striatal dopamine transporters and cognitive function in Parkinson’s disease. Acta Neurol Scand 142(4):385–391. https://doi.org/10.1111/ane.13320

    Article  CAS  PubMed  Google Scholar 

  5. Fornari LHT, da Silva JN, Muratt Carpenedo C, Hilbig A, Rieder CRM (2021) Striatal dopamine correlates to memory and attention in Parkinson’s disease. Am J Nucl Med Mol Imaging 11(1):10–19

    PubMed  PubMed Central  Google Scholar 

  6. Bishnoi R, Badir MC, Surya S, Youssef NA (2021) Predicting neuropsychiatric symptoms of Parkinson’s disease with measures of striatal dopaminergic deficiency. Curr Alzheimer Res 18(6):499–504. https://doi.org/10.2174/1567205018666210827122133

    Article  CAS  PubMed  Google Scholar 

  7. Contaldi E, Magistrelli L, Gallo S, Comi C (2022) Striatal dopamine transporter imaging in Parkinson's disease drug-naïve patients: focus on sexual dysfunction. Neurol Sci 43(8):4769–4776. https://doi.org/10.1007/s10072-022-06050-7

    Article  PubMed  PubMed Central  Google Scholar 

  8. Liu H, Li J, Wang X, Huang J, Wang T, Lin Z, Xiong N (2022) Excessive daytime sleepiness in Parkinson’s disease. Nat Sci Sleep 14:1589–1609. https://doi.org/10.2147/nss.S375098

    Article  PubMed  PubMed Central  Google Scholar 

  9. Zhang Y, Ren R, Sanford LD, Yang L, Zhou J, Tan L, Li T, Zhang J, Wing YK, Shi J, Lu L, Tang X (2020) Sleep in Parkinson’s disease: a systematic review and meta-analysis of polysomnographic findings. Sleep Med Rev 51:101281. https://doi.org/10.1016/j.smrv.2020.101281

    Article  PubMed  Google Scholar 

  10. Zuzuárregui JRP, During EH (2020) Sleep issues in Parkinson’s disease and their management. Neurotherapeutics 17(4):1480–1494. https://doi.org/10.1007/s13311-020-00938-y

    Article  PubMed  PubMed Central  Google Scholar 

  11. Salat D, Noyce AJ, Schrag A, Tolosa E (2016) Challenges of modifying disease progression in prediagnostic Parkinson’s disease. Lancet Neurol 15(6):637–648. https://doi.org/10.1016/s1474-4422(16)00060-0

    Article  PubMed  Google Scholar 

  12. Del Pino R, Murueta-Goyena A, Ayala U, Acera M, Fernández M, Tijero B, Carmona M, Fernández T, Gabilondo I, Gómez-Esteban JC (2021) Clinical long-term nocturnal sleeping disturbances and excessive daytime sleepiness in Parkinson’s disease. PLoS One 16(12):e0259935. https://doi.org/10.1371/journal.pone.0259935

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Abbott RD, Ross GW, White LR, Tanner CM, Masaki KH, Nelson JS, Curb JD, Petrovitch H (2005) Excessive daytime sleepiness and subsequent development of Parkinson disease. Neurology 65(9):1442–1446. https://doi.org/10.1212/01.wnl.0000183056.89590.0d

    Article  CAS  PubMed  Google Scholar 

  14. Cova I, Priori A (2018) Diagnostic biomarkers for Parkinson’s disease at a glance: where are we? J. Neural Transm 125(10):1417–1432. https://doi.org/10.1007/s00702-018-1910-4

    Article  CAS  PubMed  Google Scholar 

  15. Happe S, Baier PC, Helmschmied K, Meller J, Tatsch K, Paulus W (2007) Association of daytime sleepiness with nigrostriatal dopaminergic degeneration in early Parkinson’s disease. J. Neurol 254(8):1037–1043. https://doi.org/10.1007/s00415-006-0483-6

    Article  PubMed  Google Scholar 

  16. Nicastro N, Garibotto V, Burkhard PR (2020) Extrastriatal (123)I-FP-CIT SPECT impairment in Parkinson’s disease - the PPMI cohort. BMC Neurol 20(1):192. https://doi.org/10.1186/s12883-020-01777-2

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Pak K, Kim H, Seok JW, Lee MJ, Shin S, Kim K, Lee JM, Seo Y, Kim BS, Jun S, Kim IJ (2023) Correction to: prediction of future weight change with dopamine transporter in patients with Parkinson's disease. J Neural Transm (Vienna). https://doi.org/10.1007/s00702-023-02637-2

  18. Simuni T, Caspell-Garcia C, Coffey C, Chahine LM, Lasch S, Oertel WH, Mayer G, Högl B, Postuma R, Videnovic A, Amara AW, Marek K (2015) Correlates of excessive daytime sleepiness in de novo Parkinson’s disease: a case control study. Mov Disord 30(10):1371–1381. https://doi.org/10.1002/mds.26248

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Yousaf T, Pagano G, Niccolini F, Politis M (2018) Excessive daytime sleepiness may be associated with caudate denervation in Parkinson disease. J Neurol Sci 387:220–227. https://doi.org/10.1016/j.jns.2018.02.032

    Article  PubMed  Google Scholar 

  20. Yousaf T, Pagano G, Niccolini F, Politis M (2018) Increased dopaminergic function in the thalamus is associated with excessive daytime sleepiness. Sleep Med 43:25–30. https://doi.org/10.1016/j.sleep.2017.11.1137

    Article  PubMed  Google Scholar 

  21. Postuma RB, Berg D, Stern M, Poewe W, Olanow CW, Oertel W, Obeso J, Marek K, Litvan I, Lang AE, Halliday G, Goetz CG, Gasser T, Dubois B, Chan P, Bloem BR, Adler CH, Deuschl G (2015) MDS clinical diagnostic criteria for Parkinson’s disease. Mov Disord 30(12):1591–1601. https://doi.org/10.1002/mds.26424

    Article  PubMed  Google Scholar 

  22. Johns MW (1991) A new method for measuring daytime sleepiness: the Epworth sleepiness scale. Sleep 14(6):540–545. https://doi.org/10.1093/sleep/14.6.540

    Article  CAS  PubMed  Google Scholar 

  23. Johns MW (2000) Sensitivity and specificity of the multiple sleep latency test (MSLT), the maintenance of wakefulness test and the epworth sleepiness scale: failure of the MSLT as a gold standard. J Sleep Res 9(1):5–11. https://doi.org/10.1046/j.1365-2869.2000.00177.x

    Article  CAS  PubMed  Google Scholar 

  24. Seibyl J, Jennings D, Grachev I, Coffey C, Marek K (2013) 123-I Ioflupane SPECT measures of Parkinson disease progression in the Parkinson Progression Marker Initiative (PPMI) trial. Soc Nuclear Med.

    Google Scholar 

  25. Smith AD, Olson RJ, Justice JB, Jr (1992) Quantitative microdialysis of dopamine in the striatum: effect of circadian variation. J Neurosci Methods 44(1):33–41. https://doi.org/10.1016/0165-0270(92)90111-p

    Article  CAS  PubMed  Google Scholar 

  26. Oishi Y, Lazarus M (2017) The control of sleep and wakefulness by mesolimbic dopamine systems. Neurosci Res 118:66–73. https://doi.org/10.1016/j.neures.2017.04.008

    Article  CAS  PubMed  Google Scholar 

  27. Lena I, Parrot S, Deschaux O, Muffat‐Joly S, Sauvinet V, Renaud BEEA, Gottesmann C (2005) Variations in extracellular levels of dopamine, noradrenaline, glutamate, and aspartate across the sleep–wake cycle in the medial prefrontal cortex and nucleus accumbens of freely moving rats. J. Neurosci. Res 81(6):891–899

    Article  CAS  PubMed  Google Scholar 

  28. Boissard R, Gervasoni D, Schmidt MH, Barbagli B, Fort P, Luppi PH (2002) The rat ponto-medullary network responsible for paradoxical sleep onset and maintenance: a combined microinjection and functional neuroanatomical study. Eur J Neurosci 16(10):1959–1973. https://doi.org/10.1046/j.1460-9568.2002.02257.x

    Article  PubMed  Google Scholar 

  29. Saper CB, Scammell TE, Lu J (2005) Hypothalamic regulation of sleep and circadian rhythms. Nature 437(7063):1257–1263. https://doi.org/10.1038/nature04284

    Article  CAS  PubMed  Google Scholar 

  30. Dzirasa K, Ribeiro S, Costa R, Santos LM, Lin SC, Grosmark A, Sotnikova TD, Gainetdinov RR, Caron MG, Nicolelis MA (2006) Dopaminergic control of sleep-wake states. J Neurosci 26(41):10577–10589. https://doi.org/10.1523/jneurosci.1767-06.2006

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Alonso IP, Pino JA, Kortagere S, Torres GE, España RA (2021) Dopamine transporter function fluctuates across sleep/wake state: potential impact for addiction. Neuropsychopharmacology 46(4):699–708. https://doi.org/10.1038/s41386-020-00879-2

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

“PPMI—a public-private partnership—is funded by the Michael J. Fox Foundation for Parkinson’s Research and funding partners, including 4D Pharma, Abbvie, Acurex Therapeutics, Allergan, Amathus Therapeutics, ASAP, Avid Radiopharmaceuticals, Bial Biotech, Biogen, BioLegend, Bristol-Myers Squibb, Calico, Celgene, DaCapo Brain Science, Denali, The Edmond J. Safra Foundation, Eli Lilly and Company, GE Healthcare, GlaxoSmithKline, Golub Capital, Handl Therapeutics, Insitro, Janssen Pharmaceuticals, Lundbeck, Merck, Meso Scale Diagnostics, Neurocrine Biosciences, Pfizer, Piramal, Prevail, F. Hoffmann-La Roche Ltd and its affiliated company Genentech Inc., Roche, Sanofi Genzyme, Servier, Takeda, Teva, UCB, Vanqua Bio, Verily, Voyager Therapeutics, and Yumanity Therapeutics. We are also grateful to Dr. Fardin Nabizadeh for helping with the management of the dataset and English editing.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Erfan Naghavi.

Ethics declarations

Ethical approval and Informed consent

Each site’s institutional review board approved the study, and the participants agreed to participate by providing written consent after being fully informed.

Consent for publication

Not applicable

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Naghavi, E., Aliasin, M.M. Epworth sleepiness scale is associated with increased striatal dopamine uptake in Parkinson’s disease: a cross-sectional study. Neurol Sci 45, 149–154 (2024). https://doi.org/10.1007/s10072-023-06974-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10072-023-06974-8

Keywords

Navigation