Skip to main content
Log in

A pilot study on identifying gene signatures as markers for predicting patient response to antiseizure medications

  • Original Article
  • Published:
Neurological Sciences Aims and scope Submit manuscript

Abstract

The majority of the biomarkers were associated with the diagnosis of epilepsy and few of them can be applied to predict the response to antiseizure medications (ASMs). In this study, we identified 26 significantly up-regulated genes and 32 down-regulated genes by comparing the gene expression profiles of patients with epilepsy that responded to valproate with those without applying any ASM. The results of gene set enrichment analysis indicated that the ferroptosis pathway was significantly impacted (p = 0.0087) in patients who responded to valproate. Interestingly, the gene NCOA4 in this pathway exhibited significantly different expression levels between the two groups, indicating that NCOA4 could serve as a potential biomarker to better understand the mechanism of valproate resistance. In addition, six up-regulated genes SF3A2, HMGN2, PABPN1, SSBP3, EFTUD2, and CREB3L2 as well as six down-regulated genes ZFP36L1, ACRC, SUB1, CALM2, TLK1, and STX2 also showed significantly different expression patterns between the two groups. Moreover, based on the gene expression profiles of the patients with the treatment of valproate, carbamazepine, and phenytoin, we proposed a strategy for predicting the response to the ASMs by using the Connectivity Map scoring method. Our findings could be helpful for better understanding the mechanisms of drug resistance of ASMs and improving the clinical treatment of epilepsy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Data availability

This datasets analyzed during the current study are available in the Gene Expression Omnibus, accession number: GSE143272 (https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE143272).

Abbreviations

ASMs:

Antiseizure medications

VPA:

Valproate

CBZ:

Carbamazepine

PHT:

Phenytoin

CMap:

Connectivity Map

DEGs:

Differentially expressed genes

GEO:

Gene Expression Omnibus

DAVID:

Visualization and Integrated Discovery

SNM:

Supervised Normalization of Microarrays

WTCS:

Weighted connectivity score

AUC:

Area under the receiver operating characteristic curve

FTH1:

Ferritin heavy chain 1

NCOA4:

Nuclear receptor coactivator 4

PCBP1:

Poly r(C) binding protein 1

OPMD:

Oculopharyngeal muscular dystrophy

IQR:

Interquartile range

References

  1. Fisher RS et al (2014) ILAE official report: a practical clinical definition of epilepsy. Epilepsia 55(4):475–482

    Article  PubMed  Google Scholar 

  2. Rizvi S et al (2017) Epidemiology of early stages of epilepsy: risk of seizure recurrence after a first seizure. Seizure 49:46–53

    Article  PubMed  Google Scholar 

  3. Chen Z et al (2018) Treatment outcomes in patients with newly diagnosed epilepsy treated with established and new antiepileptic drugs: a 30-year longitudinal cohort study. JAMA Neurol 75(3):279–286

    Article  PubMed  Google Scholar 

  4. Kalilani L et al (2018) The epidemiology of drug-resistant epilepsy: a systematic review and meta-analysis. Epilepsia 59(12):2179–2193

    Article  PubMed  Google Scholar 

  5. Fisher RS et al (2017) Instruction manual for the ILAE 2017 operational classification of seizure types. Epilepsia 58(4):531–542

    Article  PubMed  Google Scholar 

  6. Scheffer IE et al (2017) ILAE classification of the epilepsies: position paper of the ILAE Commission for Classification and Terminology. Epilepsia 58(4):512–521

    Article  PubMed  PubMed Central  Google Scholar 

  7. Specchio LM, Beghi E (2004) Should antiepileptic drugs be withdrawn in seizure-free patients? CNS Drugs 18(4):201–212

    Article  CAS  PubMed  Google Scholar 

  8. Schmidt D (2011) AED discontinuation may be dangerous for seizure-free patients. J Neural Transm (Vienna) 118(2):183–186

    Article  PubMed  Google Scholar 

  9. Beghi E et al (2013) Withdrawal of antiepileptic drugs: guidelines of the Italian League Against Epilepsy. Epilepsia 54(Suppl 7):2–12

    Article  CAS  PubMed  Google Scholar 

  10. Wang J et al (2015) Genome-wide circulating microRNA expression profiling indicates biomarkers for epilepsy. Sci Rep 5:9522

    Article  PubMed  PubMed Central  Google Scholar 

  11. An N et al (2016) Elevated serum miR-106b and miR-146a in patients with focal and generalized epilepsy. Epilepsy Res 127:311–316

    Article  CAS  PubMed  Google Scholar 

  12. Wang D et al (2016) GC-MS-Based metabolomics discovers a shared serum metabolic characteristic among three types of epileptic seizures. Epilepsy Res 126:83–89

    Article  CAS  PubMed  Google Scholar 

  13. Yan S et al (2017) Altered microRNA profiles in plasma exosomes from mesial temporal lobe epilepsy with hippocampal sclerosis. Oncotarget 8(3):4136–4146

    Article  PubMed  Google Scholar 

  14. Li R, Hu J, Cao S (2020) The clinical significance of miR-135b-5p and its role in the proliferation and apoptosis of hippocampus neurons in children with temporal lobe epilepsy. Dev Neurosci 42(5–6):187–194

    Article  CAS  PubMed  Google Scholar 

  15. Martins-Ferreira R et al (2020) Circulating microRNAs as potential biomarkers for genetic generalized epilepsies: a three microRNA panel. Eur J Neurol 27(4):660–666

    Article  CAS  PubMed  Google Scholar 

  16. Raoof R et al (2018) Dual-center, dual-platform microRNA profiling identifies potential plasma biomarkers of adult temporal lobe epilepsy. EBioMedicine 38:127–141

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Conte G et al (2021) Circulating P2X7 receptor signaling components as diagnostic biomarkers for temporal lobe epilepsy. Cells 10(9):2444

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Mo L et al (2019) Association of cerebrospinal fluid zinc-alpha2-glycoprotein and tau protein with temporal lobe epilepsy and related white matter impairment. NeuroReport 30(8):586–591

    Article  CAS  PubMed  Google Scholar 

  19. Maiti R et al (2018) Effect of anti-seizure drugs on serum S100B in patients with focal seizure: a randomized controlled trial. J Neurol 265(11):2594–2601

    Article  CAS  PubMed  Google Scholar 

  20. Walker LE et al (2022) High-mobility group box 1 as a predictive biomarker for drug-resistant epilepsy: a proof-of-concept study. Epilepsia 63(1):e1–e6

    Article  CAS  PubMed  Google Scholar 

  21. Toscano ECB et al (2019) Circulating levels of adipokines are altered in patients with temporal lobe epilepsy. Epilepsy Behav 90:137–141

    Article  PubMed  Google Scholar 

  22. Wang J et al (2015) Circulating microRNAs are promising novel biomarkers for drug-resistant epilepsy. Sci Rep 5:10201

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Niu X et al (2021) MiR-194-5p serves as a potential biomarker and regulates the proliferation and apoptosis of hippocampus neuron in children with temporal lobe epilepsy. J Chin Med Assoc 84(5):510–516

    Article  CAS  PubMed  Google Scholar 

  24. Sun Y et al (2016) Expression of microRNA-129-2-3p and microRNA-935 in plasma and brain tissue of human refractory epilepsy. Epilepsy Res 127:276–283

    Article  CAS  PubMed  Google Scholar 

  25. Wang X et al (2016) Serum microRNA-4521 is a potential biomarker for focal cortical dysplasia with refractory epilepsy. Neurochem Res 41(4):905–912

    Article  CAS  PubMed  Google Scholar 

  26. Avansini SH et al (2017) MicroRNA hsa-miR-134 is a circulating biomarker for mesial temporal lobe epilepsy. PLoS ONE 12(4):e0173060

    Article  PubMed  PubMed Central  Google Scholar 

  27. De Benedittis S et al (2021) Circulating microRNA: the potential novel diagnostic biomarkers to predict drug resistance in temporal lobe epilepsy, a pilot study. Int J Mol Sci 22(2):702

    Article  PubMed  PubMed Central  Google Scholar 

  28. Shen CH et al (2019) Expression of plasma microRNA-145-5p and its correlation with clinical features in patients with refractory epilepsy. Epilepsy Res 154:21–25

    Article  CAS  PubMed  Google Scholar 

  29. Raoof R et al (2017) Cerebrospinal fluid microRNAs are potential biomarkers of temporal lobe epilepsy and status epilepticus. Sci Rep 7(1):3328

    Article  PubMed  PubMed Central  Google Scholar 

  30. Hogg MC et al (2019) Elevation in plasma tRNA fragments precede seizures in human epilepsy. J Clin Invest 129(7):2946–2951

    Article  PubMed  PubMed Central  Google Scholar 

  31. Mirzajani S et al (2020) Expression analysis of lncRNAs in refractory and non-refractory epileptic patients. J Mol Neurosci 70(5):689–698

    Article  CAS  PubMed  Google Scholar 

  32. Wang R et al (2016) Evaluation of serum matrix metalloproteinase-3 as a biomarker for diagnosis of epilepsy. J Neurol Sci 367:291–297

    Article  CAS  PubMed  Google Scholar 

  33. Wang R et al (2016) Serum matrix metalloproteinase-2: a potential biomarker for diagnosis of epilepsy. Epilepsy Res 122:114–119

    Article  CAS  PubMed  Google Scholar 

  34. Zhang H et al (2019) Chitinase-3-like protein 1 may be a potential biomarker in patients with drug-resistant epilepsy. Neurochem Int 124:62–67

    Article  CAS  PubMed  Google Scholar 

  35. Asadollahi M, Simani L (2019) The diagnostic value of serum UCHL-1 and S100-B levels in differentiate epileptic seizures from psychogenic attacks. Brain Res 1704:11–15

    Article  CAS  PubMed  Google Scholar 

  36. Asia P et al (2021) The study of ischemia modified albumin as an early biomarker of epilepsy in adolescent population: a cross-sectional study. Horm Mol Biol Clin Investig 42(2):183–187

    Article  CAS  PubMed  Google Scholar 

  37. Lai Q et al (2022) GluR3B antibody was a biomarker for drug-resistant epilepsy in patients with focal to bilateral tonic-clonic seizures. Front Immunol 13:838389

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Stocklin B et al (2015) Copeptin as a serum biomarker of febrile seizures. PLoS ONE 10(4):e0124663

    Article  PubMed  PubMed Central  Google Scholar 

  39. Wang N et al (2021) Serum neuropeptide Y level is associated with post-ischemic stroke epilepsy. J Stroke Cerebrovasc Dis 30(2):105475

    Article  PubMed  Google Scholar 

  40. Kopczynska M et al (2018) Complement system biomarkers in epilepsy. Seizure 60:1–7

    Article  PubMed  Google Scholar 

  41. Hong Z et al (2014) Serum brain-derived neurotrophic factor levels in epilepsy. Eur J Neurol 21(1):57–64

    Article  CAS  PubMed  Google Scholar 

  42. Rawat C et al (2020) Downregulation of peripheral PTGS2/COX-2 in response to valproate treatment in patients with epilepsy. Sci Rep 10(1):2546

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Mootha VK et al (2003) PGC-1alpha-responsive genes involved in oxidative phosphorylation are coordinately downregulated in human diabetes. Nat Genet 34(3):267–273

    Article  CAS  PubMed  Google Scholar 

  44. Subramanian A et al (2005) Gene set enrichment analysis: a knowledge-based approach for interpreting genome-wide expression profiles. Proc Natl Acad Sci USA 102(43):15545–15550

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Subramanian A et al (2017) A next generation connectivity map: L1000 platform and the first 1,000,000 profiles. Cell 171(6):1437-1452 e17

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Dang X et al (2022) Correlation of ferroptosis and other types of cell death in neurodegenerative diseases. Neurosci Bull 38(8):938–952

    Article  CAS  PubMed  Google Scholar 

  47. Curinha A et al (2014) Implications of polyadenylation in health and disease. Nucleus 5(6):508–519

    Article  PubMed  PubMed Central  Google Scholar 

  48. Weis S et al (2017) Metabolic adaptation establishes disease tolerance to sepsis. Cell 169(7):1263-1275 e14

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Muhoberac BB, Vidal R (2019) iron, ferritin, hereditary ferritinopathy, and neurodegeneration. Front Neurosci 13:1195

    Article  PubMed  PubMed Central  Google Scholar 

  50. Akyuz E et al (2021) Myocardial iron overload in an experimental model of sudden unexpected death in epilepsy. Front Neurol 12:609236

    Article  PubMed  PubMed Central  Google Scholar 

  51. Philpott CC, Jadhav S (2019) The ins and outs of iron: escorting iron through the mammalian cytosol. Free Radic Biol Med 133:112–117

    Article  CAS  PubMed  Google Scholar 

  52. Philpott CC (2018) The flux of iron through ferritin in erythrocyte development. Curr Opin Hematol 25(3):183–188

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Santana-Codina N, Gikandi A, Mancias JD (2021) The role of NCOA4-mediated ferritinophagy in ferroptosis. Adv Exp Med Biol 1301:41–57

    Article  CAS  PubMed  Google Scholar 

  54. Cai Y, Yang Z (2021) Ferroptosis and its role in epilepsy. Front Cell Neurosci 15:696889

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Sticht C et al (2018) miRWalk: an online resource for prediction of microRNA binding sites. PLoS One 13(10):e0206239

    Article  PubMed  PubMed Central  Google Scholar 

  56. Brodie MJ et al (2012) Patterns of treatment response in newly diagnosed epilepsy. Neurology 78(20):1548–1554

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Gesche J et al (2017) Resistance to valproic acid as predictor of treatment resistance in genetic generalized epilepsies. Epilepsia 58(4):e64–e69

    Article  CAS  PubMed  Google Scholar 

  58. Sills GJ, Rogawski MA (2020) Mechanisms of action of currently used antiseizure drugs. Neuropharmacology 168:107966

    Article  CAS  PubMed  Google Scholar 

Download references

Funding

This work was supported by grants from the National Natural Science Foundation of China (No. 81871018), the National Natural Science Foundation of China (No. 21575094), and Med-X Center for Informatics funding project (No. YGJC001).

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed to the study conception and design. Material preparation, data collection, and analysis were performed by YD, LK, and YH. The first draft of the manuscript was written by YD, LK, and YH. All authors contributed to discussions regarding the results and the manuscript. LC, ZW, ML, and TL revised the manuscript. All authors read and approved the final manuscript.

Corresponding authors

Correspondence to Zhining Wen or Lei Chen.

Ethics declarations

Ethical approval

Not available.

Informed consent

No informed consent statement was not required for this study.

Conflict of interest

None.

Additional information

Publisher's note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Duan, Y., Kang, L., He, Y. et al. A pilot study on identifying gene signatures as markers for predicting patient response to antiseizure medications. Neurol Sci 44, 2137–2148 (2023). https://doi.org/10.1007/s10072-023-06605-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10072-023-06605-2

Keywords

Navigation