Skip to main content
Log in

Pre-operative cognitive burden as predictor of motor outcome following bilateral subthalamic nucleus deep brain stimulation in Parkinson’s disease

  • Original Article
  • Published:
Neurological Sciences Aims and scope Submit manuscript

Abstract

Introduction

The interrelationship between neurocognitive impairments and motor functions was observed in patients with advanced Parkinson’s disease (PD). This study was conducted to identify pre-operative neurocognitive and clinical predictors of short-term motor outcome following subthalamic nucleus deep brain stimulation (STN-DBS).

Methods

All consecutive PD patients who were eligible for bilateral STN-DBS from 2009 to 2019 were evaluated before and at 1 year following surgery. Standard motor evaluation and neurocognitive tests including global cognition, memory, executive functions (attention and category fluency), confrontational speech, visuospatial abilities, and mood were conducted at baseline. The post-operative STN-DBS effects were assessed at 1 year following the surgery. Multiple regression analysis was applied to identify baseline independent predictors of post-operative STN-DBS effect.

Results

A total of 82 patients were analyzed. It was found that younger age at operation, higher levodopa responsiveness at baseline based on UPDRS-III total score, and better baseline verbal delayed memory and category fluency predicted post-operative motor outcome at 1 year following STN-DBS (F = 9.639, p < 0.001, R2 = .340).

Conclusion

Our findings demonstrated the role of baseline cognitive burden, especially cognitive processes related to frontostriatal circuits, was significant clinical predictors of short-term motor outcomes following STN-DBS. Profile analysis of neurocognitive functions at baseline is recommended.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Benabid A-L, Deuschl G, Lang AE, Lyons KE, Rezai AR (2006) Deep brain stimulation for Parkinson’s disease. Mov Disord 21(S14):S168–S170

    Article  PubMed  Google Scholar 

  2. Zhu XL, Chan DT, Lau CK, Poon WS, Mok VC, Chan AY, Wong LK, Yeung JH, Leung MC, Tang VY, Wong RK, Yeung C (2014) Cost-effectiveness of subthalmic nucleus deep brain stimulation for the treatment of advanced Parkinson disease in Hong Kong: a prospective study. World Neurosurg 82(6):987–993

    Article  CAS  PubMed  Google Scholar 

  3. Saranza G, Lang AE (2021) Levodopa challenge test: indications, protocol, and guide. J Neurol. 268(9):3135–3143. https://doi.org/10.1007/s00415-020-09810-7

    Article  CAS  PubMed  Google Scholar 

  4. Kleiner-Fisman G, Herzog J, Fisman DN, Tamma F, Lyons KE, Pahwa R, Lang AE, Deuschl G (2006) Subthalamic nucleus deep brain stimulation: summary and meta-analysis of outcomes. Mov Disord 21(Suppl 14):S290-304

    Article  PubMed  Google Scholar 

  5. Fukaya C, Watanabe M, Kobayashi K, Oshima H, Yoshino A, Yamamoto T (2017) Predictive factors for long-term outcome of subthalamic nucleus deep brain stimulation for Parkinson’s disease. Neurol Med Chir (Tokyo) 57(4):166–171

    Article  Google Scholar 

  6. Lin Z, Zhang X, Wang L, Zhang Y, Zhou H, Sun Q, Sun B, Huang P, Li D (2021) Revisiting the L-Dopa response as a predictor of motor outcomes after deep brain stimulation in Parkinson’s disease. Front Hum Neurosci. 4(15):604433. https://doi.org/10.3389/fnhum.2021.604433

  7. Cavallieri F, Fraix V, Bove F, Mulas D, Tondelli M, Castrioto A, Krack P, Meoni S, Schmitt E, Lhommée E, Bichon A, Pélissier P, Chevrier E, Kistner A, Seigneuret E, Chabardès S, Moro E (2021) Predictors of Long-term outcome of subthalamic stimulation in Parkinson disease. Ann Neurol 89(3):587–597

    Article  CAS  PubMed  Google Scholar 

  8. Santangelo G, Vitale C, Picillo M, Moccia M, Cuoco S, Longo K, Pezzella D, di Grazia A, Erro R, Pellecchia MT, Amboni M, Trojano L, Barone P (2015) Mild cognitive impairment in newly diagnosed Parkinson’s disease: a longitudinal prospective study. Parkinsonism Relat Disord 21(10):1219–1226

    Article  PubMed  Google Scholar 

  9. Luca A, Monastero R, Baschi R, Cicero CE, Mostile G, Davì M, Restivo V, Zappia M, Nicoletti A (2021) Cognitive impairment and levodopa induced dyskinesia in Parkinson’s disease: a longitudinal study from the PACOS cohort. Sci Rep 11(1):867

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Camicioli R, Majumdar SR (2010) Relationship between mild cognitive impairment and falls in older people with and without Parkinson’s disease: 1-year prospective cohort study. Gait Posture 32(1):87–91

    Article  PubMed  Google Scholar 

  11. Smeding HMM, Speelman JD, Huizenga HM, Schuurman PR, Schmand B (2011) Predictors of cognitive and psychosocial outcome after STN DBS in Parkinson’s disease. J Neurol Neurosurg Psychiatry 82(7):754–760

    Article  PubMed  Google Scholar 

  12. Grill WM (2005) Safety considerations for deep brain stimulation: review and analysis. Expert Rev Med Devices 2(4):409–420

    Article  PubMed  Google Scholar 

  13. Kwan V, Shum D, Haffenden A, Yeates KO, Kwok A, Lau H, Poon WS, Chan D, Zhu XL, Chan D, Mok V, Chan A, Ma K, Yeung J, Lau C, Bezchlibnyk Y, Kiss Z, Tang V (2021) A retrospective comparison of cognitive performance in individuals with advanced Parkinson’s Disease in Hong Kong and Canada. Appl Neuropsychol Adult 15:1–9. https://doi.org/10.1080/23279095.2021

    Article  Google Scholar 

  14. Wong A, Law LS, Liu W, Wang Z, Lo ES, Lau A, Wong LK, Mok VC (2015) Montreal Cognitive Assessment: one cutoff never fits all. Stroke 46(12):3547–3550

    Article  PubMed  Google Scholar 

  15. Litvan I, Goldman JG, Tröster AI, Schmand BA, Weintraub D, Petersen RC, Mollenhauer B, Adler CH, Marder K, Williams-Gray CH, Aarsland D, Kulisevsky J, Rodriguez-Oroz MC, Burn DJ, Barker RA, Emre M (2012) Diagnostic criteria for mild cognitive impairment in Parkinson’s disease: Movement Disorder Society Task Force guidelines. Mov Disord 27(3):349–356

    Article  PubMed  PubMed Central  Google Scholar 

  16. Lee TMC, Wing K (2010) Neuropsychological measures: normative data for Chinese, second edition (revised). The University of Hong Kong, Hong Kong

    Google Scholar 

  17. Benton AS (1991) Benton Visual Retention Test, 5th edn. The Psychological Corporation, San Antonio, Texas, Manual

    Google Scholar 

  18. Cheung RW, Cheung MC, Chan AS (2004) Confrontation naming in Chinese patients with left, right or bilateral brain damage. J Int Neuropsychol Soc 10:46–53

    Article  PubMed  Google Scholar 

  19. Hooper HE (1985) The Hooper Visual Organization Test. Manuel, Western Psychological Services, Los Angeles, CA

    Google Scholar 

  20. V.N. Benton AL, Hamsher KD (1978) Visuospatial judgment. A clinical test. Arch Neurol 35(6):364–367

  21. Chan AS, Poon MW (1999) Performance of 7- to 95-year-old individuals in a Chinese version of the category fluency test. J Int Neuropsychol Soc 5:523–533

    Article  Google Scholar 

  22. Johnston R, Jones K, Manley D (2018) Confounding and collinearity in regression analysis: a cautionary tale and an alternative procedure, illustrated by studies of British voting behaviour. Qual Quant 52(4):1957–1976

    Article  PubMed  Google Scholar 

  23. Elger CE, Grunwald T, Lehnertz K, Kutas M, Helmstaedter C, Brockhaus A, Van Roost D, Heinze HJ (1997) Human temporal lobe potentials in verbal learning and memory processes. Neuropsychologia 35(5):657–667

    Article  CAS  PubMed  Google Scholar 

  24. Moustafa AA, Chakravarthy S, Phillips JR, Crouse JJ, Gupta A, Frank MJ, Hall JM, Jahanshahi M (2016) Interrelations between cognitive dysfunction and motor symptoms of Parkinson’s disease: behavioral and neural studies. Rev Neurosci 27(5):535–548

    Article  PubMed  Google Scholar 

  25. Wojtala J, Heber IA, Neuser P, Heller J, Kalbe E, Rehberg SP, Storch A, Linse K, Schneider C, Gräber S, Berg D, Dams J, Balzer-Geldsetzer M, Hilker-Roggendorf R, Oberschmidt C, Baudrexel S, Witt K, Schmidt N, Deuschl G, Mollenhauer B, Trenkwalder C, Liepelt-Scarfone I, Spottke A, Roeske S, Wüllner U, Wittchen H-U, Riedel O, Dodel R, Schulz JB, Reetz K (2019) Cognitive decline in Parkinson’s disease: the impact of the motor phenotype on cognition. J Neurol Neurosurg Psychiatry 90(2):171–179

    Article  PubMed  Google Scholar 

  26. Muslimović D, Post B, Speelman JD, Schmand B (2005) Cognitive profile of patients with newly diagnosed Parkinson disease. Neurology 65(8):1239–1245

    Article  PubMed  Google Scholar 

  27. Schillaci O, Chiaravalloti A, Pierantozzi M, Di Pietro B, Koch G, Bruni C, Stanzione P, Stefani A (2011) Different patterns of nigrostriatal degeneration in tremor type versus the akinetic-rigid and mixed types of Parkinson’s disease at the early stages: molecular imaging with 123I-FP-CIT SPECT. Int J Mol Med 28(5):881–886

    CAS  PubMed  Google Scholar 

  28. Domellöf ME, Elgh E, Forsgren L (2011) The relation between cognition and motor dysfunction in drug-naive newly diagnosed patients with Parkinson’s disease. Mov Disord 26(12):2183–2189

    Article  PubMed  Google Scholar 

  29. Oh JY, Kim YS, Choi BH, Sohn EH, Lee AY (2009) Relationship between clinical phenotypes and cognitive impairment in Parkinson’s disease (PD). Arch Gerontol Geriatr 49(3):351–354

    Article  PubMed  Google Scholar 

  30. Burn DJ, Rowan EN, Allan LM, Molloy S, O’Brien JT, McKeith IG (2006) Motor subtype and cognitive decline in Parkinson’s disease, Parkinson’s disease with dementia, and dementia with Lewy bodies. J Neurol Neurosurg Psychiatry 77(5):585–589

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Moustafa AA, Krishna R, Eissa AM, Hewedi DH (2013) Factors underlying probabilistic and deterministic stimulus-response learning performance in medicated and unmedicated patients with Parkinson’s disease. Neuropsychology 27(4):498–510

    Article  PubMed  Google Scholar 

  32. Moustafa AA, Bell P, Eissa AM, Hewedi DH (2013) The effects of clinical motor variables and medication dosage on working memory in Parkinson’s disease. Brain Cogn 82(2):137–145

    Article  PubMed  Google Scholar 

  33. O’Reilly RC, Frank MJ (2006) Making working memory work: a computational model of learning in the prefrontal cortex and basal ganglia. Neural Comput 18(2):283–328

    Article  PubMed  Google Scholar 

  34. Rosenberg-Katz K, Herman T, Jacob Y, Giladi N, Hendler T, Hausdorff JM (2013) Gray matter atrophy distinguishes between Parkinson disease motor subtypes. Neurology 80(16):1476–1484

    Article  PubMed  PubMed Central  Google Scholar 

  35. Elgh E, Domellöf M, Linder J, Edström M, Stenlund H, Forsgren L (2009) Cognitive function in early Parkinson’s disease: a population-based study. Eur J Neurol 16(12):1278–1284

    Article  CAS  PubMed  Google Scholar 

  36. Lewis SJ, Foltynie T, Blackwell AD, Robbins TW, Owen AM, Barker RA (2005) Heterogeneity of Parkinson’s disease in the early clinical stages using a data driven approach. J Neurol Neurosurg Psychiatry 76(3):343–348

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Williams-Gray CH, Foltynie T, Brayne CE, Robbins TW, Barker RA (2007) Evolution of cognitive dysfunction in an incident Parkinson’s disease cohort. Brain 130(Pt 7):1787–1798

    Article  CAS  PubMed  Google Scholar 

  38. Williams-Gray CH, Hampshire A, Robbins TW, Owen AM, Barker RA (2007) Catechol O-methyltransferase Val158Met genotype influences frontoparietal activity during planning in patients with Parkinson’s disease. J Neurosci 27(18):4832–4838

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. de la Fuente-Fernández R (2012) Frontostriatal cognitive staging in Parkinson’s disease. Parkinsons Dis 2012:561046–561046

    PubMed  Google Scholar 

  40. Puig MV, Antzoulatos EG, Miller EK (2014) Prefrontal dopamine in associative learning and memory. Neuroscience 282:217–229

    Article  CAS  PubMed  Google Scholar 

  41. Zgaljardic DJ, Borod JC, Foldi NS, Mattis PJ, Gordon MF, Feigin A, Eidelberg D (2006) An examination of executive dysfunction associated with frontostriatal circuitry in Parkinson’s disease. J Clin Exp Neuropsychol 28(7):1127–1144

    Article  PubMed  PubMed Central  Google Scholar 

  42. Fukaya C, Watanabe M, Kobayashi K, Oshima H, Yoshino A, Yamamoto T (2017) Predictive factors for long-term outcome of subthalamic nucleus deep brain stimulation for Parkinson’s disease. Neurol Med Chir 57(4):166–171

    Article  Google Scholar 

  43. Lezak MD, Howieson DB, Loring DW (2004) Neuropsychological assessment. Oxford University Press, UK

    Google Scholar 

  44. Schlösser R, Hutchinson M, Joseffer S, Rusinek H, Saarimaki A, Stevenson J, Dewey SL, Brodie JD (1998) Functional magnetic resonance imaging of human brain activity in a verbal fluency task. J Neurol Neurosurg Psychiatry 64(4):492–498

    Article  PubMed  PubMed Central  Google Scholar 

  45. Henry JD, Crawford JR (2004) Verbal fluency deficits in Parkinson’s disease: a meta-analysis. J Int Neuropsychol Soc 10(4):608–622

    Article  PubMed  Google Scholar 

  46. Giussani C, Riva M, Gallucci M, Boukhatem L, Sganzerla EP, Demonet J-F, Roux F-E (2011) Anatomical correlates for category-specific naming of living and non-living things. Neuroimage 56(1):323–329

    Article  PubMed  Google Scholar 

  47. Cardona JF, Grisales-Cardenas JS, Trujillo-Llano C, Diazgranados JA, Urquina HF, Cardona S, Torres A, Torres LA, Gonzalez LM, Jaramillo T, Cediel J, Oñate-Cadena N, Mateus-Ferro G, Marmolejo-Ramos F (2021) Semantic memory and lexical availability in Parkinson’s disease: a statistical learning study. Front Aging Neurosci 13:697065–697065

    Article  PubMed  PubMed Central  Google Scholar 

  48. Binder JR, Desai RH (2011) The neurobiology of semantic memory. Trends Cogn Sci 15(11):527–536

    Article  PubMed  PubMed Central  Google Scholar 

  49. Higginson CI, King DS, Levine D, Wheelock VL, Khamphay NO, Sigvardt KA (2003) The relationship between executive function and verbal memory in Parkinson’s disease. Brain Cogn 52(3):343–352

    Article  PubMed  Google Scholar 

  50. Bohlhalter S, Abela E, Weniger D, Weder B (2009) Impaired verbal memory in Parkinson disease: relationship to prefrontal dysfunction and somatosensory discrimination. Behav Brain Funct 5(1):49

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Venus Tang.

Ethics declarations

Ethical approval

Ethical approval was obtained from the Hong Kong New Territories East Cluster Clinical Research Ethics Committee for the retrospective use of these clinical data. Written informed consent was obtained from each patient at pre-operation.

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher's note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tang, V., Zhu, X.L., Lau, C. et al. Pre-operative cognitive burden as predictor of motor outcome following bilateral subthalamic nucleus deep brain stimulation in Parkinson’s disease. Neurol Sci 43, 6803–6811 (2022). https://doi.org/10.1007/s10072-022-06370-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10072-022-06370-8

Keywords

Navigation