Skip to main content
Log in

Disorders of arousal and sleep-related hypermotor epilepsy — overview and challenges night is a battlefield of sleep and arousal promoting forces

  • Review Article
  • Published:
Neurological Sciences Aims and scope Submit manuscript

Abstract

Arousability and reactivity to sensory stimuli are essential features of sleep, discriminating it from coma and keeping the sleeper in contact with the environment. Arousals and oscillations during sleep serve the reversibility of sleep and carry an alarm function awakening the sleeper in danger. In this review, we will explore mechanisms and circuits involved in arousal intrusions within the sleep texture, focusing on the significance of these phenomena in two sleep-related conditions: NREM sleep parasomnias and sleep-related hypermotor epilepsy. Knowledges and gaps in the field are discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Halász P, Terzano M, Parrino L et al (2004) The nature of arousal in sleep. J Sleep Res 13:1–23. https://doi.org/10.1111/j.1365-2869.2004.00388.x

    Article  PubMed  Google Scholar 

  2. Halász P, Bódizs R (2013) Dynamic structure of NREM Sleep. Springer, Berlin

    Book  Google Scholar 

  3. Terzano MG, Mancia D, Salati MR et al (1985) The cyclic alternating pattern as a physiologic component of normal NREM sleep. Sleep 8:137–145. https://doi.org/10.1093/sleep/8.2.137

    Article  CAS  PubMed  Google Scholar 

  4. Halász P, Bódizs R, Parrino L et al (2014) Two features of sleep slow waves: homeostatic and reactive aspects–from long term to instant sleep homeostasis. Sleep Med 15(10):1184–1195. https://doi.org/10.1016/j.sleep.2014.06.006

    Article  PubMed  Google Scholar 

  5. Terzano MG, Parrino L, Rosa A, Palomba V, Smerieri A (2002) CAP and arousals in the structural development of sleep: an integrative perspective. Sleep Med 3(3):221–229

    Article  Google Scholar 

  6. Marshall M, Helgadóttir H, Mölle M et al (2006) Boosting slow oscillations during sleep potentiates memory. Nature 444(7119):610–613. https://doi.org/10.1038/nature05278

    Article  CAS  PubMed  Google Scholar 

  7. Massimini M, Ferrarelli F, Esser SK et al (2007) Triggering sleep slow waves by transcranial magnetic stimulation. Proc Natl Acad Sci USA 104(20):8496–8501

    Article  CAS  Google Scholar 

  8. Ngo HV, Claussen JC, Born J et al (2013) Induction of slow oscillations by rhythmic acoustic stimulation. J Sleep Res 22(1):22–31

    Article  Google Scholar 

  9. Ferri R, Bruni O, Miano S, Terzano MG (2005) Topographic mapping of the spectral components of the cyclic alternating pattern (CAP). Sleep Med 6(1):29–36 (Epub 2004 Nov 11. PubMed PMID: 15680292)

    Article  Google Scholar 

  10. Újma P. Halász P, Simor P, et al. (2018) Increased cortical involvement and synchronization during CAP A1 slow waves. Brain Struct Funct 223(3)

  11. Parrino L, Halász P, Tassinari CA, Terzano MG (2006) CAP, epilepsy and motor events during sleep: the unifying role of arousal. Sleep Med Rev 10:267–285

    Article  Google Scholar 

  12. Krueger JM, Obál F Jr, Kapás L et al (1995) Brain organization and sleep function. Behav Brain Res 69(1–2):177–185

    Article  CAS  Google Scholar 

  13. Siclari F, Tononi G (2017) Local aspects of sleep and wakefulness. Curr Opin Neurobiol 44:222–227. https://doi.org/10.1016/j.conb.2017.05.008

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Rattenborg NC, van der Meij J, Beckers GJL et al (2019) Local aspects of avian non-REM and REM Sleep. Front Neurosci 13:567. https://doi.org/10.3389/fnins.2019.00567

    Article  PubMed  PubMed Central  Google Scholar 

  15. Mascetti GG (2016) (2016) Unihemispheric sleep and asymmetrical sleep: behavioral, neurophysiological, and functional perspectives. Nat Sci Sleep 8:221–238

    Article  Google Scholar 

  16. Mahowald MW, Schenck CH (1991) (1991) Status dissociatus - a perspective on states of being. Sleep 14:69–79. https://doi.org/10.1093/sleep/14.1.69

    Article  CAS  PubMed  Google Scholar 

  17. Broughton RJ (1968) Sleep disorders: disorders of arousal?Enuresis, somnambulism, and nightmares occur in confusional states of arousal, not in “dreaming sleep.” Science 159:1070–1078. https://doi.org/10.1126/science.159.3819.1070

    Article  CAS  PubMed  Google Scholar 

  18. American Academy of Sleep Medicine (2014). The international classification of sleep disorders, Third Edition (ICSD-3). ISBN 978–0991543410.

  19. Petit D, Touchette E, Tremblay RE, Boivin M, Montplaisir J (2007) Dyssomnias and parasomnias in early childhood. Pediatrics 119(5):e1016–e1025. https://doi.org/10.1542/peds.2006-2132

    Article  PubMed  Google Scholar 

  20. Castelnovo A, Lopez R, Proserpio P et al (2018) NREM sleep parasomnias as disorders of sleep-state dissociation. Nat Rev Neurol 14(8):470–481. https://doi.org/10.1038/s41582-018-0030-y

    Article  PubMed  Google Scholar 

  21. Guilleminault C, Moscovitch A, Leger D (1995) (1985) Forensic sleep medicine: nocturnal wandering and violence. Sleep 18(9):740–748

    Article  CAS  Google Scholar 

  22. Loddo G, Lopez R, Cilea R et al (2019) Disorders of arousal in adults: new diagnostic tools for clinical practice. Sleep Sci Pract 3:5. https://doi.org/10.1186/s41606-019-0037-3

    Article  Google Scholar 

  23. Siclari F, Khatami R, Urbaniok F et al (2010) Violence in sleep. Brain. J Neurol 133(Pt 12):3494–3509

    Google Scholar 

  24. Sabater L, Gaig C, Gelpi E et al (2014) A novel non-rapid-eye movement and rapid-eye-movement parasomnia with sleep breathing disorder associated with antibodies to IgLON5: a case series, characterisation of the antigen, and post-mortem study. Lancet Neurol 13(6):575–586

    Article  CAS  Google Scholar 

  25. Tagliapietra M, Frasson E, Cardellini D, et al. (2020). Hypothalamic-Bulbar MRI hyperintensity in Anti-IgLON5 disease with serum-restricted antibodies: a case report and systematic review of literature. J Alzheimers Dis. 2020 https://doi.org/10.3233/JAD-201105

  26. Heidbreder A, Frauscher B, Mitterling T (2016) Not only sleepwalking but NREM parasomnia irrespective of the type is associated with HLA DQB1∗05:01. J Clin Sleep Med 12(4):565–570

    Article  Google Scholar 

  27. Schenck CH, Garcia-Rill E, Segall M et al (1996) HLA class II genes associated with REM sleep behavior disorder. Ann Neurol 39:261–263. https://doi.org/10.1002/ana.410390216

    Article  CAS  PubMed  Google Scholar 

  28. Cosentino FI, Distefano A, Plazzi G et al (2014) A case of REM sleep behavior disorder, narcolepsy-cataplexy, parkinsonism, and rheumatoid arthritis. Behav Neurol 2014:572931. https://doi.org/10.1155/2014/572931

    Article  PubMed  PubMed Central  Google Scholar 

  29. Bassetti C, Vella S, Donati F, Wielepp P, Weder B (2000) SPECT during sleepwalking. Lancet 356(9228):484–485. https://doi.org/10.1016/S0140-6736(00)02561-7

    Article  CAS  PubMed  Google Scholar 

  30. Terzaghi M, Sartori I, Tassi L et al (2012) Dissociated local arousal states underlying essential clinical features of non-rapid eye movement arousal parasomnia: an intracerebral stereo-electroencephalographic study. J Sleep Res 21:502–506. https://doi.org/10.1111/j.1365-2869.2012.01003.x

    Article  PubMed  Google Scholar 

  31. Sarasso S, Pigorini A, Proserpio P et al (2014) Fluid boundaries between wake and sleep: experimental evidence from stereo-EEG recordings. Arch Ital Biol 152(2–3):169–177

    CAS  PubMed  Google Scholar 

  32. Gibbs SA, Proserpio P, Francione S et al (2019) Clinical features of sleep-related hypermotor epilepsy in relation to the seizure-onset zone: a review of 135 surgically treated cases. Epilepsia 60(4):707–717. https://doi.org/10.1111/epi.14690

    Article  PubMed  Google Scholar 

  33. Lugaresi E, Cirignotta F, Montagna P (1986) Nocturnal paroxysmal dystonia. J Neurol Neurosurg Psychiatry 49:375–380. https://doi.org/10.1136/jnnp.49.4.375

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Provini F, Plazzi G, Tinuper P et al (1999) Nocturnal frontal lobe epilepsy: a clinical and polygraphic overview of 100 consecutive cases. Brain 12:1017–1031. https://doi.org/10.1093/brain/122.6.1017

    Article  Google Scholar 

  35. Tinuper P, Bisulli F, Cross JH et al (2016) Definition and diagnostic criteria of sleep-related hypermotor epilepsy. Neurology 86:1834–42. https://doi.org/10.1212/WNL.0000000000002666

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Evangelisti S, Testa C, Ferri L, Gramegna LL, Manners DN, Rizzo G, Remondini D, Castellani G, Naldi I, Bisulli F, Tonon C, Tinuper P, Lodi R (2017) Brain functional connectivity in sleep-related hypermotor epilepsy. NeuroImage Clinical 17:873–881. https://doi.org/10.1016/j.nicl.2017.12.00

    Article  PubMed  PubMed Central  Google Scholar 

  37. Scheffer IE, Bhatia KP, Lopes-Cendes IF et al (1995) Autosomal dominant nocturnal frontal lobe epilepsy: a distinctive clinical disorder. Brain 118:61–73. https://doi.org/10.1093/brain/118.1.61

    Article  PubMed  Google Scholar 

  38. Møller RS, Dahl HA, Helbig I (2015) The contribution of next generation sequencing to epilepsy genetics. Expert Rev Mol Diagn 15(12):1531–1538. https://doi.org/10.1586/14737159.2015.1113132

    Article  CAS  PubMed  Google Scholar 

  39. Halász P (2015) (2015) Are absence epilepsy and nocturnal frontal lobe epilepsy system epilepsies of the sleep/wake system? Behav Neurol 2015:231676. https://doi.org/10.1155/2015/231676

    Article  PubMed  PubMed Central  Google Scholar 

  40. Oldani A, Zucconi M, Smirne S (1999) The neurophysiological evaluation of nocturnal frontal lobe epilepsy. Seizure 7:317–320

    Article  Google Scholar 

  41. Palmini A, Gambardella A, Andermann F et al (1995) Intrinsic epileptogenicity of human dysplastic cortex as suggested by corticography and surgical results. Ann Neurol 37(4):476–487

    Article  CAS  Google Scholar 

  42. Licchetta L, Bisulli F, Vignatelli L (2017) Sleep-related hypermotor epilepsy: long-term outcome in a large cohort. Neurology 88(1):70–77. https://doi.org/10.1212/WNL.0000000000003459

    Article  PubMed  PubMed Central  Google Scholar 

  43. Puligheddu M, Melis M, Pillolla G et al (2017) Rationale for an adjunctive therapy with fenofibrate in pharmacoresistant nocturnal frontal lobe epilepsy. Epilepsia 58(10):1762–1770. https://doi.org/10.1111/epi.13863

    Article  CAS  PubMed  Google Scholar 

  44. Hublin C, Kaprio J (2003) Genetic aspects and genetic epidemiology of parasomnias. Sleep Med Rev 7:413–421. https://doi.org/10.1053/smrv.2001.0247

    Article  PubMed  Google Scholar 

  45. Lecendreux M, Bassetti C, Dauvilliers Y et al (2003) HLA and genetic susceptibility to sleepwalking. Mol Psychiatry 8:114–117. https://doi.org/10.1038/sj.mp.4001203

    Article  CAS  PubMed  Google Scholar 

  46. Licis AK, Desruisseau DM, Yamada KA et al (2011) Novel genetic findings in an extended family pedigree with sleepwalking. Neurology 76:49–52. https://doi.org/10.1212/WNL.0b013e318203e964

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Bisulli F, Vignatelli L, Naldi I et al (2010) Increased frequency of arousal parasomnias in families with nocturnal frontal lobe epilepsy: a common mechanism? Epilepsia. 51(9), 1852–60.Celesia GG, Jasper HH. (1966) Acetylcholine released from cerebral cortex in relation to state of activation. Neurology 16:1053–1063. https://doi.org/10.1212/WNL.16.11.1053

    Article  Google Scholar 

  48. Han Z-Y, Le Novère N, Zoli M et al (2000) Localization of nAChR subunit mRNAs in the brain of Macaca mulatta. Eur J Neurosci 12:3664–3674. https://doi.org/10.1046/j.1460-9568.2000.00262.x

    Article  CAS  PubMed  Google Scholar 

  49. Picard F, Bruel D, Servent D et al (2006) Alteration of the in vivo nicotinic receptor density in ADNFLE patients: a PET study. Brain 129:2047–2060. https://doi.org/10.1093/brain/awl156

    Article  CAS  PubMed  Google Scholar 

  50. Derry CP, Harvey AS, Walker MC et al (2009) NREM arousal parasomnias and their distinction from nocturnal frontal lobe epilepsy: a video EEG analysis. Sleep 32:1637–1644. https://doi.org/10.1093/sleep/32.12.1637

    Article  PubMed  PubMed Central  Google Scholar 

  51. Loddo G, Baldassarri L, Zenesini C et al (2020) Seizures with paroxysmal arousals in sleep-related hypermotor epilepsy (SHE): dissecting epilepsy from NREM parasomnias. Epilepsia 61(10):2194–2202. https://doi.org/10.1111/epi.16659

    Article  PubMed  Google Scholar 

  52. Gibbs SA, Proserpio P, Francione S, Mai R, Cossu M, Tassi L, Nobili L (2018) Seizure duration and latency of hypermotor manifestations distinguish frontal from extrafrontal onset in sleep-related hypermotor epilepsy. Epilepsia 59(9):e130–e134. https://doi.org/10.1111/epi.14517

    Article  PubMed  Google Scholar 

  53. Zucconi M, Oldani A, Smirne S et al (2000) The macrostructure and microstructure of sleep in patients with autosomal dominant nocturnal frontal lobe epilepsy. J Clin Neurophysiol 17:77–86. https://doi.org/10.1097/00004691-200001000-00008

    Article  CAS  PubMed  Google Scholar 

  54. Nobili L, Cardinale F, Magliola U et al (2009) Taylor’s focal cortical dysplasia increases the risk of sleep-related epilepsy. Epilepsia 50(12):2599–2604

    Article  Google Scholar 

  55. Chokroverty S (2018) Sleep-related hypermotor syndrome: an arousal parasomnia or nocturnal frontal lobe epilepsy? Sleep Med 41:110–111. https://doi.org/10.1016/j.sleep.2017.09.007

    Article  PubMed  Google Scholar 

  56. Nobili L, de Weerd A, Rubboli G et al (2020) Standard procedures for the diagnostic pathway of sleep-related epilepsies and comorbid sleep disorders: a European Academy of Neurology, European Sleep Research Society and International League against Epilepsy-Europe consensus review. J Sleep Res 29(6):e13184. https://doi.org/10.1111/jsr.13184)

    Article  PubMed  Google Scholar 

  57. Halász P, Szűcs A (2020) Sleep and epilepsy link by plasticity. Front Neurol 11:911. https://doi.org/10.3389/fneur.2020.00911

    Article  PubMed  PubMed Central  Google Scholar 

  58. Parrino L, Smerieri A, Spaggiari MC, Terzano (2000) M. G. Cyclic alternating pattern (CAP) and epilepsy during sleep: how a physiological rhythm modulates a pathological event. Clin Neurophysiol 111:S39-46

    Article  Google Scholar 

  59. Mutti C, Bernabè G, Barozzi N et al (2020) Commonalities and differences in NREM parasomnias and sleep-related epilepsy: is there a continuum between the two conditions? Front Neurol 11:600026. https://doi.org/10.3389/fneur.2020.600026

    Article  PubMed  PubMed Central  Google Scholar 

  60. Baldini T, Loddo G, Sessagesimi, (2019) Clinical features and pathophysiology of disorders of arousal in adults: a window into the sleeping brain. Front Neurol. https://doi.org/10.3389/fneur.2019.00526

    Article  PubMed  PubMed Central  Google Scholar 

  61. Jaar O, Pilon M, Carrier J et al (2010) Analysis of slow-wave activity and slow-wave oscillations prior to somnambulism. Sleep 33(11):1511–1516. https://doi.org/10.1093/sleep/33.11.151110.1093/sleep/33.11.1511

    Article  PubMed  PubMed Central  Google Scholar 

  62. Zadra A, Pilon M (2011) NREM parasomnias. Handb Clin Neurol 99:851–868. https://doi.org/10.1016/B978-0-444-52007-4.00011-4

    Article  PubMed  Google Scholar 

  63. Zadra A, Desautels A, Petit D et al (2013) Somnambulism: clinical aspects and pathophysiological hypotheses. Lancet Neurol 12:285–294. https://doi.org/10.1016/S1474-4422(12)70322-8

    Article  PubMed  Google Scholar 

  64. Siclari F, Nobili L, Lo Russo G et al (2011) (2011) Stimulus-induced, sleep-bound, focal seizures: a case report. Sleep 34(12):1727–1730

    Article  Google Scholar 

  65. Januszko P, Niemcewicz S, Gajda T (2016) Sleepwalking episodes are preceded by arousal-related activation in the cingulate motor area: EEG 457..(http://www.sciencedirect.com/science/article/pii/S1388245715000681)current density imaging. Clin Neurophysiology.127(1): 530–6,ISSN 1388-

  66. Mazars G (1970) Criteria for identifying cingulate epilepsies. Epilepsia 11(1):41–47

    Article  CAS  Google Scholar 

  67. Bancaud J, Talairach J (1992) Clinical semiology of frontal lobe seizures. Adv Neurol 57:3–58

    CAS  PubMed  Google Scholar 

  68. Beckmann M, Johansen-Berg H, Rushworth MF (2009) Connectivity-based parcellation of human cingulate cortex and its relation to functional specialization. J Neurosci 29:1175–1190

    Article  CAS  Google Scholar 

  69. Alkawadri R, So NK, Van Ness PC, Alexopoulos AV (2013) Cingulate epilepsy: report of electroclinical subtypes, with surgical outcomes. JAMA Neurol 70(8):995–1002. https://doi.org/10.1001/jamaneurol.2013.2940

    Article  PubMed  PubMed Central  Google Scholar 

  70. Chou CC, Lee CC, Lin CF et al (2020) Cingulate gyrus epilepsy: semiology, invasive EEG, and surgical approaches. Neurosurg Focus 48(4):E8. https://doi.org/10.3171/.1.focus19914.pmid:32234986

    Article  PubMed  Google Scholar 

  71. Rheims S, Ryvlin P, Scherer C et al (2008) Analysis of clinical patterns and underlying epileptogenic zones of hypermotor seizures. Epilepsia 49(12):2030–2040. https://doi.org/10.1111/j.1528-1167.2008.01675.x

    Article  PubMed  Google Scholar 

  72. Vasileios Kokkinos, Serge Vulliémoz, Andreas M. Koupparis et al (2018): A hemodynamic network involving the insula, the cingulate, and the basal forebrain correlates with EEG synchronization phases of sleep instability. Sleep

  73. Tassinari CA, Gardella E, Cantalupo G et al (2010) Relationship of central pattern generators with parasomnias and sleep-related epileptic seizures. Sleep Med Clin 7:125–134. https://doi.org/10.1016/j.jsmc.2012.01.003

    Article  Google Scholar 

Download references

Acknowledgements

We wish to thank the anonymous reviewer for his/her improving suggestions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Liborio Parrino.

Ethics declarations

Conflict of interest

None.

Ethical approval

None.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Halász, P., Szűcs, A., Mutti, C. et al. Disorders of arousal and sleep-related hypermotor epilepsy — overview and challenges night is a battlefield of sleep and arousal promoting forces. Neurol Sci 43, 927–937 (2022). https://doi.org/10.1007/s10072-021-05857-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10072-021-05857-0

Keywords

Navigation