Skip to main content

Advertisement

Log in

Cerebrospinal fluid vitamin D-binding protein as a new biomarker for the diagnosis of meningitis

  • Original Article
  • Published:
Neurological Sciences Aims and scope Submit manuscript

Abstract

Background

Meningitis is an inflammatory process involving meninges. It is difficult to diagnose because of the absence of a diagnostic biomarker. We first report here the possibility of cerebrospinal fluid (CSF) vitamin D-binding protein (VDBP) as a new biomarker for the diagnosis of meningitis.

Methods

This prospective study enrolled a total of 102 subjects (58 patients with non-neurologic disease, 17 patients with meningitis, and 27 patients with other neurologic diseases) from 2017 to 2018. CSF and blood samples were collected in pairs. Total 25(OH)D in CSF and serum and VDBP levels in serum were measured. GC genotyping was also performed to determine polymorphisms of rs4588 and rs7041. CSF total 25(OH)D and VDBP levels were compared with serum total 25(OH)D and VDBP levels according to disease (meningitis vs. non-meningitis). Receiver operating characteristic (ROC) analysis for the diagnosis of meningitis using CSF VDBP level was performed.

Results

Mean CSF VDBP and serum VDBP levels of all patients were 1.48 ± 1.32 and 181.28 ± 56.90 μg/mL, respectively. CSF VDBP level in the meningitis disease group (3.20 ± 1.49 μg/mL) was significantly (P < 0.001) higher than that in other disease groups. According to ROC curve analysis, the appropriate cut-off value for CSF VDBP was 1.96 μg/mL, showing sensitivity of 82.4% and specificity of 85.9%. AUC of CSF VDBP was 0.879 (95% CI: 0.789–0.962).

Conclusions

CSF VDBP level showed very good diagnostic performance. It could be used as a potential biomarker for the diagnosis of meningitis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Thigpen MC, Whitney CG, Messonnier NE, Zell ER, Lynfield R, Hadler JL, Harrison LH, Farley MM, Reingold A, Bennett NM, Craig AS, Schaffner W, Thomas A, Lewis MM, Scallan E, Schuchat A, Emerging Infections Programs N (2011) Bacterial meningitis in the United States, 1998-2007. N Engl J Med 364(21):2016–2025. https://doi.org/10.1056/NEJMoa1005384

    Article  CAS  PubMed  Google Scholar 

  2. Martin NG, Iro MA, Sadarangani M, Goldacre R, Pollard AJ, Goldacre MJ (2016) Hospital admissions for viral meningitis in children in England over five decades: a population-based observational study. Lancet Infect Dis 16(11):1279–1287. https://doi.org/10.1016/S1473-3099(16)30201-8

    Article  PubMed  Google Scholar 

  3. van de Beek D, de Gans J, Tunkel AR, Wijdicks EF (2006) Community-acquired bacterial meningitis in adults. N Engl J Med 354(1):44–53. https://doi.org/10.1056/NEJMra052116

    Article  PubMed  Google Scholar 

  4. Schuchat A, Robinson K, Wenger JD, Harrison LH, Farley M, Reingold AL, Lefkowitz L, Perkins BA (1997) Bacterial meningitis in the United States in 1995. Active surveillance team. N Engl J Med 337(14):970–976. https://doi.org/10.1056/NEJM199710023371404

    Article  CAS  PubMed  Google Scholar 

  5. Hoogman M, van de Beek D, Weisfelt M, de Gans J, Schmand B (2007) Cognitive outcome in adults after bacterial meningitis. J Neurol Neurosurg Psychiatry 78(10):1092–1096. https://doi.org/10.1136/jnnp.2006.110023

    Article  PubMed  PubMed Central  Google Scholar 

  6. van de Beek D, de Gans J, Spanjaard L, Weisfelt M, Reitsma JB, Vermeulen M (2004) Clinical features and prognostic factors in adults with bacterial meningitis. N Engl J Med 351(18):1849–1859. https://doi.org/10.1056/NEJMoa040845

    Article  PubMed  Google Scholar 

  7. Mount HR, Boyle SD (2017) Aseptic and bacterial meningitis: evaluation, treatment, and prevention. Am Fam Physician 96(5):314–322

    PubMed  Google Scholar 

  8. Weisfelt M, van de Beek D, Spanjaard L, Reitsma JB, de Gans J (2006) Community-acquired bacterial meningitis in older people. J Am Geriatr Soc 54(10):1500–1507. https://doi.org/10.1111/j.1532-5415.2006.00878.x

    Article  PubMed  Google Scholar 

  9. Bhan I (2014) Vitamin d binding protein and bone health. Int J Endocrinol 2014:561214. https://doi.org/10.1155/2014/561214

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Chun RF (2012) New perspectives on the vitamin D binding protein. Cell Biochem Funct 30(6):445–456. https://doi.org/10.1002/cbf.2835

    Article  CAS  PubMed  Google Scholar 

  11. Heijboer AC, Blankenstein MA, Kema IP, Buijs MM (2012) Accuracy of 6 routine 25-hydroxyvitamin D assays: influence of vitamin D binding protein concentration. Clin Chem 58(3):543–548. https://doi.org/10.1373/clinchem.2011.176545

    Article  CAS  PubMed  Google Scholar 

  12. Schwartz JB, Lai J, Lizaola B, Kane L, Markova S, Weyland P, Terrault NA, Stotland N, Bikle D (2014) A comparison of measured and calculated free 25(OH) vitamin D levels in clinical populations. J Clin Endocrinol Metab 99(5):1631–1637. https://doi.org/10.1210/jc.2013-3874

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Gomme PT, Bertolini J (2004) Therapeutic potential of vitamin D-binding protein. Trends Biotechnol 22(7):340–345. https://doi.org/10.1016/j.tibtech.2004.05.001

    Article  CAS  PubMed  Google Scholar 

  14. Arnaud J, Constans J (1993) Affinity differences for vitamin D metabolites associated with the genetic isoforms of the human serum carrier protein (DBP). Hum Genet 92(2):183–188

    Article  CAS  PubMed  Google Scholar 

  15. Kamboh MI, Ferrell RE (1986) Ethnic variation in vitamin D-binding protein (GC): a review of isoelectric focusing studies in human populations. Hum Genet 72(4):281–293

    Article  CAS  PubMed  Google Scholar 

  16. Cooke NE, McLeod JF, Wang XK, Ray K (1991) Vitamin D binding protein: genomic structure, functional domains, and mRNA expression in tissues. J Steroid Biochem Mol Biol 40(4–6):787–793

    Article  CAS  PubMed  Google Scholar 

  17. Meier U, Gressner O, Lammert F, Gressner AM (2006) Gc-globulin: roles in response to injury. Clin Chem 52(7):1247–1253. https://doi.org/10.1373/clinchem.2005.065680

    Article  CAS  PubMed  Google Scholar 

  18. White P, Cooke N (2000) The multifunctional properties and characteristics of vitamin D-binding protein. Trends Endocrinol Metab 11(8):320–327

    Article  CAS  PubMed  Google Scholar 

  19. Jirikowski GF, Kaunzner UW, Dief Ael E, Caldwell JD (2009) Distribution of vitamin D binding protein expressing neurons in the rat hypothalamus. Histochem Cell Biol 131(3):365–370. https://doi.org/10.1007/s00418-008-0540-6

    Article  CAS  Google Scholar 

  20. Speeckaert M, Huang G, Delanghe JR, Taes YE (2006) Biological and clinical aspects of the vitamin D binding protein (Gc-globulin) and its polymorphism. Clin Chim Acta 372(1–2):33–42. https://doi.org/10.1016/j.cca.2006.03.011

    Article  CAS  PubMed  Google Scholar 

  21. Gressner OA, Schifflers MC, Kim P, Heuts L, Lahme B, Gressner AM (2009) Questioning the role of actinfree Gc-globulin as actin scavenger in neurodegenerative central nervous system disease: relationship to S-100B levels and blood-brain barrier function. Clin Chim Acta 400(1–2):86–90. https://doi.org/10.1016/j.cca.2008.10.015

    Article  CAS  PubMed  Google Scholar 

  22. Yang M, Qin Z, Zhu Y, Li Y, Qin Y, Jing Y, Liu S (2013) Vitamin D-binding protein in cerebrospinal fluid is associated with multiple sclerosis progression. Mol Neurobiol 47(3):946–956. https://doi.org/10.1007/s12035-012-8387-1

    Article  CAS  PubMed  Google Scholar 

  23. Savonius O, Pelkonen T, Roine I, Viljakainen H, Andersson S, Fernandez J, Peltola H, Helve O (2018) Vitamin D was not associated with survival or cerebrospinal fluid cathelicidin levels in children with bacterial meningitis. Acta Paediatr 107(12):2131–2136. https://doi.org/10.1111/apa.14393

    Article  CAS  PubMed  Google Scholar 

  24. Zhang L, Ma L, Zhou X, Meng J, Wen J, Huang R, Gao T, Xu L, Zhu L (2018) Diagnostic value of Procalcitonin for bacterial meningitis in children: a comparison analysis between serum and cerebrospinal fluid Procalcitonin levels. Clin Pediatr 9922818809477:159–165. https://doi.org/10.1177/0009922818809477

    Article  Google Scholar 

  25. Perga S, Giuliano Albo A, Lis K, Minari N, Falvo S, Marnetto F, Caldano M, Reviglione R, Berchialla P, Capobianco MA, Malentacchi M, Corpillo D, Bertolotto A (2015) Vitamin D binding protein isoforms and apolipoprotein E in cerebrospinal fluid as prognostic biomarkers of multiple sclerosis. PLoS One 10(6):e0129291. https://doi.org/10.1371/journal.pone.0129291

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Pardridge WM, Sakiyama R, Coty WA (1985) Restricted transport of vitamin D and a derivatives through the rat blood-brain barrier. J Neurochem 44(4):1138–1141

    Article  CAS  PubMed  Google Scholar 

  27. Jereb M, Muzlovic I, Hojker S, Strle F (2001) Predictive value of serum and cerebrospinal fluid procalcitonin levels for the diagnosis of bacterial meningitis. Infection 29(4):209–212

    Article  CAS  PubMed  Google Scholar 

  28. Bennett J, Basivireddy J, Kollar A, Biron KE, Reickmann P, Jefferies WA, McQuaid S (2010) Blood-brain barrier disruption and enhanced vascular permeability in the multiple sclerosis model EAE. J Neuroimmunol 229(1–2):180–191. https://doi.org/10.1016/j.jneuroim.2010.08.011

    Article  CAS  PubMed  Google Scholar 

  29. Brown J, Bianco JI, McGrath JJ, Eyles DW (2003) 1,25-dihydroxyvitamin D3 induces nerve growth factor, promotes neurite outgrowth and inhibits mitosis in embryonic rat hippocampal neurons. Neurosci Lett 343(2):139–143

    Article  CAS  PubMed  Google Scholar 

  30. Bhan I, Powe CE, Berg AH, Ankers E, Wenger JB, Karumanchi SA, Thadhani RI (2012) Bioavailable vitamin D is more tightly linked to mineral metabolism than total vitamin D in incident hemodialysis patients. Kidney Int 82(1):84–89. https://doi.org/10.1038/ki.2012.19

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Bikle DD, Gee E, Halloran B, Kowalski MA, Ryzen E, Haddad JG (1986) Assessment of the free fraction of 25-hydroxyvitamin D in serum and its regulation by albumin and the vitamin D-binding protein. J Clin Endocrinol Metab 63(4):954–959. https://doi.org/10.1210/jcem-63-4-954

    Article  CAS  PubMed  Google Scholar 

  32. Bikle DD, Siiteri PK, Ryzen E, Haddad JG (1985) Serum protein binding of 1,25-dihydroxyvitamin D: a reevaluation by direct measurement of free metabolite levels. J Clin Endocrinol Metab 61(5):969–975. https://doi.org/10.1210/jcem-61-5-969

    Article  CAS  PubMed  Google Scholar 

  33. Christensen EI, Birn H (2002) Megalin and cubilin: multifunctional endocytic receptors. Nat Rev Mol Cell Biol 3(4):256–266. https://doi.org/10.1038/nrm778

    Article  CAS  Google Scholar 

  34. Nielson CM, Jones KS, Chun RF, Jacobs JM, Wang Y, Hewison M, Adams JS, Swanson CM, Lee CG, Vanderschueren D, Pauwels S, Prentice A, Smith RD, Shi T, Gao Y, Schepmoes AA, Zmuda JM, Lapidus J, Cauley JA, Bouillon R, Schoenmakers I, Orwoll ES (2016) Free 25-Hydroxyvitamin D: impact of vitamin D binding protein assays on racial-genotypic associations. J Clin Endocrinol Metab 101(5):2226–2234. https://doi.org/10.1210/jc.2016-1104

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Jung JY, Choi DP, Won S, Lee Y, Shin JH, Kim YS, Kim SK, Oh YM, Suh I, Lee SD (2014) Relationship of vitamin D binding protein polymorphisms and lung function in Korean chronic obstructive pulmonary disease. Yonsei Med J 55(5):1318–1325. https://doi.org/10.3349/ymj.2014.55.5.1318

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Mubashir M, Anwar S, Tareen AK, Mehboobali N, Iqbal K, Iqbal MP (2017) Association of vitamin D deficiency and VDBP gene polymorphism with the risk of AMI in a Pakistani population. Pak J Med Sci 33(6):1349–1354. https://doi.org/10.12669/pjms.336.13379

  37. Haldar D, Agrawal N, Patel S, Kambale PR, Arora K, Sharma A, Tripathi M, Batra A, Kabi BC (2018) Association of VDBP and CYP2R1 gene polymorphisms with vitamin D status in women with polycystic ovarian syndrome: a north Indian study. Eur J Nutr 57(2):703–711. https://doi.org/10.1007/s00394-016-1357-z

    Article  CAS  PubMed  Google Scholar 

  38. Knudsen CS, Nexo E, Hojskov CS, Heickendorff L (2012) Analytical validation of the Roche 25-OH vitamin D Total assay. Clin Chem Lab Med 50(11):1965–1968. https://doi.org/10.1515/cclm-2011-0964

    Article  CAS  PubMed  Google Scholar 

Download references

Funding

This study was supported by the National Research Foundation of Korea (NRF) grant funded by the Korea government (MSIT) (2018R1C1B5040593). It was also supported by the Lee Jung Ja research grant of Gyeongsang National University Hospital (LJJ-GNUH-2018-001).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Min-Chul Cho.

Ethics declarations

The study protocol was approved by the Institutional Review Board of Gyeongsang National University Hospital (approval number: 2017-03-010). Written informed consent was obtained from all participants.

Conflict of interest

The authors declare that they have no conflicts of interest.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lee, DH., Kang, H., Kim, J.H. et al. Cerebrospinal fluid vitamin D-binding protein as a new biomarker for the diagnosis of meningitis. Neurol Sci 40, 1597–1605 (2019). https://doi.org/10.1007/s10072-019-03873-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10072-019-03873-9

Keywords

Navigation