Skip to main content
Log in

Vitamin A and amygdala: functional and morphological consequences

  • Original Article
  • Published:
Neurological Sciences Aims and scope Submit manuscript

Abstract

Intake of vitamin A is essential for correct embryonic development of the central nervous system (CNS). Its increased intake during gravidity can cause various malformations and dysfunctions of the CNS. In our work, we intended to investigate the effect of vitamin A on emotional behavior and morphology of nitrergic neurons in basolateral nucleus of the rat amygdala. For this purpose, we have administered retinoic acid (RA), a metabolite of vitamin A, to females on 14–16 days of pregnancy at a dose 1 mg RA/kg body weight. Adult progeny of these mothers were tested in elevated plus maze test, the most widely used test for measuring anxiety-like behavior. After the test, brains of the rats were processed for reduced nicotinamide adenine dinucleotide phosphate diaphorase histochemistry, which is commonly used to mark cells containing nitric oxide synthase. Our results have shown that RA applied during the sensitive phase of intrauterine development influences emotional behavior of adult rats. Animals exposed to RA had increased levels of fear and anxiety, which has been manifested by reducing the time spent in the open arms of plus maze test. Interestingly, detected behavioral changes do not correlate with the result of our morphological study. The number and morphology of nitrergic neurons in amygdala were very similar in experimental and control rats. Our results demonstrate that prenatal exposure to RA has no effect on morphological structure of amygdala, but influences its function.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Rice D, Barone S Jr (2000) Critical periods of vulnerability for the developing nervous system: evidence from humans and animal models. Environ Health Perspect 108:511–533

    Article  PubMed  PubMed Central  Google Scholar 

  2. Lievajová K, Blaško J, Martončíková M, Cigánková V, Račeková E (2011) Delayed maturation and altered proliferation within the rat rostral migratory stream following maternal deprivation. Eur J Histochem 55(4):182–186

    Article  Google Scholar 

  3. Azaïs-Braesco V, Pascal G (2000) Vitamin A in pregnancy: requirements and safety limits. Am J Clin Nutr 71(Suppl 5):1325S–1333S

    PubMed  Google Scholar 

  4. Maden M (2007) Retinoic acid in the development, regeneration and maintenance of the nervous system. Neuroscience 8:755–765

    PubMed  CAS  Google Scholar 

  5. Frey L, Hauser WA (2003) Epidemiology of neural tube defects. Epilepsia 44:4–13

    Article  PubMed  Google Scholar 

  6. Holson RR, Gazzara RA, Ferguson SA, Adams J (1997) Behavioural effects of low-dose gestational day 11–13 retinoic acid exposure. Neurotoxicol Teratol 19:355–362

    Article  PubMed  CAS  Google Scholar 

  7. Adams J (1993) Structure-activity and dose response relationships in the neural and behavioural teratogenesis of retinoids. Neurotoxicol Teratol 15:193–202

    Article  PubMed  CAS  Google Scholar 

  8. Ghigo D, Priotto C, Migliorino D, Geromin D, Franchino C, Todde R, Costamagna C, Pescarmona G, Bosia A (1998) Retinoic acid-induced differentiation in a human neuroblastoma cell line is associated with an increase in nitric oxide synthesis. J Cell Physiol 174:99–106

    Article  PubMed  CAS  Google Scholar 

  9. Vincent SR (1994) Nitric oxide: a radical neurotransmitter in the central nervous system. Prog Neurobiol 42:129–160

    Article  PubMed  CAS  Google Scholar 

  10. Calixto AV, Vandresen N, de Nucci G, Moreno H, Faria MS (2001) Nitric oxide may underlie learned fear in the elevated T-maze. Brain Res Bull 55(1):37–42

    Article  PubMed  CAS  Google Scholar 

  11. Samama B, Boehm N (1999) Inhibition of nitric oxide synthase impairs early olfactory associative learning in newborn rats. Neurobiol Learn Mem 71(2):219–231

    Article  PubMed  CAS  Google Scholar 

  12. Zou LB, Yamada K, Tanaka T, Kameyama T, Nabeshima T (1998) Nitric oxide synthase inhibitors impair reference memory formation in a radial arm maze task in rats. Neuropharmacology 97(3):323–330

    Article  Google Scholar 

  13. Dinerman JL, Dawson TM, Schell MJ, Snowman A, Snyder SH (1994) Endothelial nitric oxide synthase localized to hippocampal pyramidal cells: implication for synaptic plasticity. Proc Natl Acad Sci 91:4214–4218

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  14. Garthwaite J, Boulton CL (1995) Nitric oxide signalling in the central nervous system. Annu Rev Physiol 57:683–706

    Article  PubMed  CAS  Google Scholar 

  15. Lancaster JR (1997) A tutorial on the diffusibility and reactivity of free nitric oxide. Nitric Oxide 1:18–30

    Article  PubMed  CAS  Google Scholar 

  16. Vincent SR, Kimura H (1992) Histochemical mapping of nitric oxide synthase in the rat brain. Neuroscience 46:755–784

    Article  PubMed  CAS  Google Scholar 

  17. Lane MA, Bailey SJ (2005) Role of retinoids signalling in the adult brain. Prog Neurobiol 75:275–293

    Article  PubMed  CAS  Google Scholar 

  18. McCafferry P, Zhang J, Crandall JE (2005) Retinoic acid signalling and function in the adult hippocampus. J Neurobiol 66:780–791

    Article  Google Scholar 

  19. Damasio AR (1994) Descartes’ error: emotion, reason, and the human brain. Avon Books, New York

    Google Scholar 

  20. Ekman P, Davidson RJ (1994) The nature of emotion: fundamental questions. Oxford University Press, New York

    Google Scholar 

  21. Pinker S (1997) How the mind works. Norton, New York

    Google Scholar 

  22. Schnorr CE, da Silva Morrone M, Simões-Pires A, da Rocha RF, Behr GA, Fonseca Moreira JC (2011) Vitamin A supplementation in rats under pregnancy and nursing induces behavioural changes and oxidative stress upon striatum and hippocampus of dams and their offspring. Brain Res 1369:60–73

    Article  PubMed  CAS  Google Scholar 

  23. Burroughs S, French D (2007) Depression and anxiety: role of mitochondria. Curr Anaesth Crit Care 18:34–41

    Article  Google Scholar 

  24. De Oliveira MR, Silvestrin RB, e Souza TM, Fonseca Moreira JC (2007) Oxidative stress in the hippocampus, anxiety-like behaviour and decreased locomotor and exploratory activity of adult rats: effects of sub acute vitamin A supplementation at therapeutic doses. Neurotoxicology 28:1191–1199

    Article  PubMed  Google Scholar 

  25. O´Reilly KC, Shumake J, Gonzalez-Lima F, Lane Michelle A, Bailey Sarah J (2006) Chronic administration of 13-cis-retinoic acid increases depression-related behaviour in mice. Neuropsychopharmacology 31:1919–1927

    Article  Google Scholar 

  26. Myhre AM, Carlsen MH, Bohn SK, Wold HL, Laake P, Blomhoff R (2003) Water-miscible, emulsified, and solid forms of retinol supplements are more toxic than oil-based preparations. Am J Clin Nutr 78:1152–1159

    PubMed  CAS  Google Scholar 

  27. Church MW, Tilak JP (1996) Differential effects of prenatal cocaine and retinoic acid on activity level throughout day and night. Pharmacol Biochem Behav 55:595–605

    Article  PubMed  CAS  Google Scholar 

  28. Holson RR, Adams J, Ferguson SA (1999) Gestational stage-specific effects of retinoic acid exposure in the rat. Neurotoxicol Teratol 21:393–402

    Article  PubMed  CAS  Google Scholar 

  29. Coluccia A, Borracci P, Belfiore D, Renna G, Carratu MR (2009) Late embryonic exposure to all-trans retinoic acid induces a pattern of motor deficits unrelated to the developmental stage. Neurotoxicology 30:1120–1126

    Article  PubMed  CAS  Google Scholar 

  30. Tomášová L, Hvizdošová N, Špakovská T, Kokošová N, Boleková A, Kluchová D (2012) The prenatal application of retinoic acid and emotional behaviour. In: Proceedings of international conference animal physiology, Lednice, 24–25 May 2012, pp 203–205

  31. Salim S, Sarraj N, Taneja M, Saha K, Tejada-Simon MV, Chugh C (2010) Moderate treadmill exercise prevents oxidative stress-mediated anxiety-like behaviour of rats. Behav Brain Res 208(2):545–552

    Article  PubMed  CAS  Google Scholar 

  32. Masood A, Nadeem A, Mustafa SJ, O’Donnell JM (2008) Reversal of oxidative stress-induced anxiety by inhibition of phosphodiesterase-2 in mice. J Pharmacol Exp Ther 326(2):369–379

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  33. Bouayed J, Rammal H, Younos C, Soulimani R (2007) Positive correlation between peripheral blood granulocyte oxidative status and level of anxiety in mice. Eur J Pharmacol 564:146–149

    Article  PubMed  CAS  Google Scholar 

  34. Cassol-Jr OJ, Comim CM, Silva BR, Hermani FV, Constantino LS, Felisberto F, Petronilho F, Hallak JE, De Martinis BS, Zuardi AW, Crippa JA, Quevedo J, Dal-Pizzol F (2010) Treatment with cannabidiol reverses oxidative stress parameters, cognitive impairment and mortality in rats submitted to sepsis by cecal ligation and puncture. Brain Res 12(1348):128–138

    Article  Google Scholar 

  35. Dal-Pizzol F, Ritter C, Cassol-Jr OJ, Rezin GT, Petronilho F, Zugno AI, Quevedo J, Streck EL (2010) Oxidative mechanisms of brain dysfunction during sepsis. Neurochem Res 35(1):1–12

    Article  PubMed  CAS  Google Scholar 

  36. Steckert AV, Valvassori SS, Moretti M, Dal-Pizzol F, Quevedo J (2010) Role of oxidative stress in the pathophysiology of bipolar disorder. Neurochem Res 35(9):1295–1301

    Article  PubMed  CAS  Google Scholar 

  37. Gross SS, Wollin MS (1995) Nitric oxide: pathophysiological mechanisms. Annu Rev Physiol 57:737–769

    Article  PubMed  CAS  Google Scholar 

  38. Magrinat G, Mason SN, Shami PJ, Weinberg JB (1992) Nitric oxide modulation of human leukemia cell differentiation and gene expression. Blood 80:1880–1884

    PubMed  CAS  Google Scholar 

  39. Yamazaki A, Birnboim HC (1995) Potentiation of retinoic acid-induced U-937 differentiation into respiratory burst-competent cells by nitric oxide donors. Leuk Res 19:325–335

    Article  PubMed  CAS  Google Scholar 

  40. Lau C, Rogers JM (2004) Embryonic and fetal programming of physiological disorders in adulthood. Birth Defects Res C Embryo Today 72:300–312

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This study was supported by Grant No. 1/0154/11 of agency VEGA of the Slovak Ministry for Education.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Adriana Boleková.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tomášová, L., Hvizdošová, N., Boleková, A. et al. Vitamin A and amygdala: functional and morphological consequences. Neurol Sci 35, 1585–1589 (2014). https://doi.org/10.1007/s10072-014-1802-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10072-014-1802-9

Keywords

Navigation