Skip to main content
Log in

Biofilm formation in food processing plants and novel control strategies to combat resistant biofilms: the case of Salmonella spp.

  • Review
  • Published:
Food Science and Biotechnology Aims and scope Submit manuscript

Abstract

Salmonella is one of the pathogens that cause many foodborne outbreaks throughout the world, representing an important global public health problem. Salmonella strains with biofilm-forming abilities have been frequently isolated from different food processing plants, especially in poultry industry. Biofilm formation of Salmonella on various surfaces can increase their viability, contributing to their persistence in food processing environments and cross-contamination of food products. In recent years, increasing concerns arise about the antimicrobial resistant and disinfectant tolerant Salmonella, while adaptation of Salmonella in biofilms to disinfectants exacerbate this problem. Facing difficulties to inhibit or remove Salmonella biofilms in food industry, eco-friendly and effective strategies based on chemical, biotechnological and physical methods are in urgent need. This review discusses biofilm formation of Salmonella in food industries, with emphasis on the current available knowledge related to antimicrobial resistance, together with an overview of promising antibiofilm strategies for controlling Salmonella in food production environments.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  • Abdelhadi IMA, Sofy AR, Hmed AA, Refaey EE, Soweha HE, Abbas MA. Discovery of polyvalent Myovirus (vB_STM-2) phage as a natural antimicrobial system to lysis and biofilm removal of Salmonella Typhimurium isolates from various food sources. Sustainability. 13: 11602 (2021).

    Article  CAS  Google Scholar 

  • Abdullah, Asghar A, Algburi A, Huang Q, Ahmad T, Zhong H, Javed HU, Ermakov AM, Chikindas ML. Anti-biofilm potential of Elletaria Cardamomum essential oil against Escherichia coli O157:H7 and Salmonella Typhimurium JSG 1748. Frontiers in Microbiology. 12: 749 (2021a).

    Article  Google Scholar 

  • Abdullah, Algburi A, Asghar A, Huang Q, Mustfa W, Javed HU, Zehm S, Chikindas ML. Black cardamom essential oil prevents Escherichia coli O157:H7 and Salmonella Typhimurium JSG 1748 biofilm formation through inhibition of quorum sensing. Journal of Food Science and Technology. 58: 3183-3191 (2021b).

    Article  CAS  PubMed  Google Scholar 

  • Alderman H, Gilligan DO, Mulford M, Tambet H, Kydd J. The role of poultry transfers in diet diversity: a cluster randomized intent to treat analysis. Food Policy. 107: 102212 (2022).

    Article  Google Scholar 

  • Amagliani G, Brandi G,Schiavano GF. Incidence and role of Salmonella in seafood safety. Food Research International. 45: 780-788 (2012).

    Article  Google Scholar 

  • Amrutha B, Sundar K, Shetty PH. Study on E. coli and Salmonella biofilms from fresh fruits and vegetables. Journal of Food Science and Technology. 54: 1091-1097 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Aruscavage D, Lee K, Miller S, LeJeune JT. Interactions affecting the proliferation and control of human pathogens on edible plants. Journal of Food Science. 71: 89-99 (2006).

    Article  Google Scholar 

  • Avila Novoa MG, Guerrero Medina PJ, Navarrete Sahagún V, Gomez Olmos I, Velazquez Suarez NY, De laCruz Color L, Gutierrez Lomeli M. Biofilm formation by multidrug-resistant serotypes of Salmonella isolated from fresh products: effects of nutritional and environmental conditions. Applied Science. 11: 3518 (2021).

    Article  Google Scholar 

  • Bag A, Chattopadhyay RR. Synergistic antibacterial and antibiofilm efficacy of nisin in combination with p-coumaric acid against food-borne bacteria Bacillus cereus and Salmonella Typhimurium. Letters in Applied Microbiology. 65: 366-372 (2017).

    Article  CAS  PubMed  Google Scholar 

  • Balakrishnan S, Ibrahim KS, Duraisamy S, Sivaji I, Kandasamy S, Kumarasamy A, Kumar NS. Antiquorum sensing and antibiofilm potential of biosynthesized silver nanoparticles of Myristica fragrans seed extract against multidrug resistant (MDR) Salmonella enterica serovar Typhi isolates from asymptomatic typhoid carriers and typhoid patients. Environmental Science and Pollution Research. 27: 2844-2856 (2020).

    Article  CAS  PubMed  Google Scholar 

  • Balkrishna A, Gupta AK, Singh K, Haldar S, Varshney A. (2021) Effects of fatty acids in super critical fluid extracted fixed oil from Withania somnifera seeds on Gram-negative Salmonella enterica biofilms. Phytomedicine Plus. 1: 100047.

    Article  Google Scholar 

  • Ben Miloud Yahia N, Ghorbal SKB, Maalej L, Chatti A, Elmay A, Chihib NE, Landoulsi A. (2018) Effect of temperature and gamma radiation on Salmonella Hadar biofilm production on different food contact surfaces. Journal of Food Quality. 2018: 1-6.

    Article  Google Scholar 

  • Beshiru A, Igbinosa IH, Igbinosa EO, Ana AS. Biofilm formation and potential virulence factors of Salmonella strains isolated from ready-to-eat shrimps. Plos One. 13: e020435 (2018).

    Article  Google Scholar 

  • Bhushan B, Sakhare SM, Narayan KS, Kumari M, Mishra V, Dicks LMT. Characterization of riboflavin-producing strains of Lactobacillus plantarum as potential probiotic candidate through in vitro assessment and principal component analysis. Probiotics and Antimicrobial Proteins. 13: 453-467 (2021).

    Article  CAS  PubMed  Google Scholar 

  • Byun, KH, Han, SH, Yoon, J, Park, SH, Ha, SD. Efficacy of chlorine-based disinfectants (sodium hypochlorite and chlorine dioxide) on Salmonella Enteritidis planktonic cells, biofilms on food contact surfaces and chicken skin. Food Control, 123: 107838 (2021).

    Article  CAS  Google Scholar 

  • Byun KH, Na KW, Ashrafudoulla M, Choi MW, Han SH, Kang I, Park SH, Ha SD. Combination treatment of peroxyacetic acid or lactic acid with UV-C to control Salmonella Enteritidis biofilms on food contact surface and chicken skin. Food Microbiology. 102: 103906 (2022).

    Article  CAS  PubMed  Google Scholar 

  • Cabarkapa I, Colovic R, Duragic O, Popovic S, Kokic B, Milanov D, Pezo L. Anti-biofilm activities of essential oils rich in carvacrol and thymol against Salmonella Enteritidis. Biofouling. 35: 361-375 (2019).

    Article  CAS  PubMed  Google Scholar 

  • Cadena M, Kelman T, Marco ML, Pitesky M. Understanding antimicrobial resistance (AMR) profiles of Salmonella biofilm and planktonic bacteria challenged with disinfectants commonly used during poultry processing. Foods. 8: 275 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Campos LM, Lemos ASO, Silva TP, Oliveira LG, Nascimento ALR, Carvalho JJ, de Moraes ACN, Rocha VN, Aguiar JAK, Scio E, Apolônio ACM, Melo RCN, Fabri RL. (2019) Mitracarpus frigidus is active against Salmonella enterica species including the biofilm form. Industrial Crops and Products. 141: 111793.

    Article  CAS  Google Scholar 

  • Cao Y, He S, Zhou Z, Zhang M, Mao W, Zhang H, Yao B. Orally administered thermostable N-acyl homoserine lactonase from Bacillus sp. strain AI96 attenuates Aeromonas hydrophila infection in zebrafish. Applied and Environmental Microbiology. 78: 1899-1908 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Capita R, Buzon Duran L, Riesco Pelaez F, Alonso Calleja C. Effect of sub-lethal concentrations of biocides on the structural parameters and viability of the biofilms formed by Salmonella Typhimurium. Foodborne Pathogens and Disease. 14: 350-356 (2017).

    Article  CAS  PubMed  Google Scholar 

  • Centre for Disease Control (CDC). Outbreak of Salmonella infections linked to ground beef. (2018). https://www.cdc.gov/salmonella/dublin-11-19/index.html

  • Cha MY, Ha JW. Low-energy X-ray irradiation effectively inactivates major foodborne pathogen biofilms on various food contact surfaces. Food Microbiology. 106: 104054 (2022).

    Article  CAS  PubMed  Google Scholar 

  • Chayapa T, Helen DD. High intensity ultrasound for Salmonella Enteritidis inactivation in culture and liquid whole eggs. Journal of Food Science. 83: 1733-1739 (2018).

    Article  Google Scholar 

  • Chuah LO, Syuhada AKS, Suhaimi IM, Hanim TF, Rusul G. Genetic relatedness, antimicrobial resistance and biofilm formation of Salmonella isolated from naturally contaminated poultry and their processing environment in northern Malaysia. Food Research International.105: 743-751 (2018).

    Article  CAS  PubMed  Google Scholar 

  • Corcoran M, Morris D, De Lappe N, O’connor J, Lalor P, Dockery P, Cormican M.  (2014) Commonly used disinfectants fail to eradicate Salmonella enterica biofilms from food contact surface materials. Applied and Environmental Microbiology. 80: 1507-1514.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Costerton JW, Cheng KJ, Geesey GG, Ladd TI, Nickel JC, Dasgupta M, Marrie TJ. Bacterial biofilms in nature and disease. Annual Reviews in Microbiology. 41: 435-464 (1987).

    Article  CAS  Google Scholar 

  • Cui X, Shi Y, Gu S, Yan X, Chen H, Ge J. Antibacterial and antibiofilm activity of lactic acid bacteria isolated from traditional artisanal milk cheese from northeast China against enteropathogenic bacteria. Probiotics and Antimicrobial Proteins. 10: 601-610 (2018).

    Article  CAS  PubMed  Google Scholar 

  • Czapka T, Maliszewska I, Olesiak Bańska J. Influence of atmospheric pressure non-thermal plasma on inactivation of biofilm cells. Plasma Chemistry and Plasma Processing. 38: 1181-1197 (2018).

    Article  CAS  Google Scholar 

  • Dantas STA, Camargo CH, Tiba Casas MR, Vivian RC, Pinto JP, Pantoja JC, Hernandes RT, Júnior AF, Rall VL. Environmental persistence and virulence of Salmonella spp. isolated from a poultry slaughterhouse. Food Research International. 129: 108835 (2020).

    Article  CAS  PubMed  Google Scholar 

  • Dhakal J, Sharma CS, Nannapaneni R, Mc DC, Kim T, Kiess A. Effect of chlorine-induced sublethal oxidative stress on the biofilm-forming ability of Salmonella at different temperatures, nutrient conditions, and substrates. Journal of Food Protection. 82: 78-92 (2019).

    Article  CAS  PubMed  Google Scholar 

  • Dhowlaghar N, Zhu MJ. Control of Salmonella in low-moisture foods: Enterococcus faecium NRRL B-2354 as a surrogate for thermal and non-thermal validation. Critical Reviews in Food Science and Nutrition. 62: 5886-5902 (2022).

    Article  CAS  PubMed  Google Scholar 

  • Elgueta E, Mena J, Orihuela PA. (2021) Hydroethanolic extracts of Haplopappus baylahuen Remy and Aloysia citriodora Palau have bactericide activity and inhibit the ability of Salmonella Enteritidis to form biofilm and adhere to human intestinal cells. BioMed Research International. 2021: 3491831.

    Article  PubMed  PubMed Central  Google Scholar 

  • Endersen L, and Coffey A. The use of bacteriophages for food safety. Current Opinion in Food Science. 36: 1-8 (2020).

    Article  Google Scholar 

  • Falleh H, Ben Jemaa M, Djebali K, Abid S, Saada M, Ksouri R. (2019) Application of the mixture design for optimum antimicrobial activity: combined treatment of Syzygium aromaticum, Cinnamomum zeylanicum, Myrtus communis, and Lavandula stoechas essential oils against Escherichia coli. Journal of Food Processing and Preservation. 43: e14257.

    Article  CAS  Google Scholar 

  • Friedman M. Antibiotic-resistant bacteria: prevalence in food and inactivation by food-compatible compounds and plant extracts. Journal of Agricultural and Food Chemistry. 63: 3805-3822 (2015).

    Article  CAS  PubMed  Google Scholar 

  • Fu Y, Deering AJ, Bhunia AK, Yao Y. Pathogen biofilm formation on cantaloupe surface and its impact on the antibacterial effect of lauroyl arginate ethyl. Food Microbiology. 64: 139-144 (2017).

    Article  CAS  PubMed  Google Scholar 

  • Giaouris E, Chorianopoulos N, Nychas GJ. Acquired acid adaptation of Listeria monocytogenes during its planktonic growth enhances subsequent survival of its sessile population to disinfection with natural organic compounds. Food Research International. 64: 896-900 (2014).

    Article  CAS  PubMed  Google Scholar 

  • Giaouris E, Simoes M, Dubois Brissonnet F. The role of biofilms in the development and dissemination of microbial resistance within the food industry. Foods. 9: 816 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gilmore BF, Flynn PB, O’Brien S, Hickok N, Freeman T, Bourke P. Cold plasmas for biofilm control: opportunities and challenges. Trends in Biotechnology. 36: 627-638 (2018).

    Article  CAS  PubMed  Google Scholar 

  • Gong C, Jiang X. Application of bacteriophages to reduce Salmonella attachment and biofilms on hard surfaces. Poultry Science. 96: 1838-1848 (2017).

    Article  CAS  PubMed  Google Scholar 

  • Govaert M, Smet C, Vergauwen L, Ećimović B, Walsh JL, Baka M, Van Impe J. Influence of plasma characteristics on the efficacy of cold atmospheric plasma (cap) for inactivation of Listeria monocytogenes and Salmonella Typhimurium biofilms. Innovative Food Science & Emerging Technologies. 52: 376-386 (2019a).

    Article  CAS  Google Scholar 

  • Govaert M, Smet C, Verheyen D, Walsh JL, Van Impe JFM. Combined effect of cold atmospheric plasma and hydrogen peroxide treatment on mature Listeria monocytogenes and Salmonella Typhimurium biofilms. Front in Microbiology. 10: 2674 (2019b).

    Article  Google Scholar 

  • Hakimi Alni R, Ghorban K, Dadmanesh M. Combined effects of Allium sativum and Cuminum cyminum essential oils on planktonic and biofilm forms of Salmonella Typhimurium isolates. 3 Biotech. 10: 315 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  • Igbinosa IH, Beshiru A, Ikediashi SC, Igbinosa EO. Identification and characterization of Salmonella serovars isolated from Pig farms in Benin City, Edo state, Nigeria: One health perspective. Microbial Drug Resistance. 27: 258-267 (2021).

    Article  CAS  PubMed  Google Scholar 

  • Iniguez Moreno M, Gutierrez Lomeli M, Avila Novoa MG. Removal of mixed-species biofilms developed on food contact surfaces with a mixture of enzymes and chemical agents. Antibiotics (Basel). 10: 931 (2021).

    Article  CAS  PubMed  Google Scholar 

  • Zwe YH, Ten MMZ, Pang X, Wong CH, Li D. Differential survivability of two genetically similar Salmonella Thompson strains on pre-harvest sweet basil (Ocimum basilicum) leaves. Frontiers in Microbiology. 12: 740983 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  • Interagency Food Safety Analytics Collaboration (IFSAC). Foodborne illness source attribution estimates for 2013 for Salmonella, Escherichia coli O157, Listeria monocytogenes, and Campylobacter using multi-year outbreak surveillance data, United States U.S. Department of Health and Human Services, CDC, FDA, USDAFSIS, GA and D.C (2017).

  • Islam MS, Zhou Y, Liang L, Nime I, Liu K, Yan T, Wang X, Li J. Application of a phage cocktail for control of Salmonella in foods and reducing biofilms. Viruses. 11: 841 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Islam MS, Hu Y, Mizan MFR, Yan T, Nime I, Zhou Y, Li J. Characterization of Salmonella phage LPST153 that effectively targets most prevalent Salmonella serovars. Microorganisms. 8: 1089 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jahid IK, Do HS. A review of microbial biofilms of produce: future challenge to food safety. Food Science and Biotechnology. 21: 299-316 (2012).

    Article  CAS  Google Scholar 

  • Jahid IK, Han N, Zhang CY, Ha SD. Mixed culture biofilms of Salmonella Typhimurium and cultivable indigenous microorganisms on lettuce show enhanced resistance of their sessile cells to cold oxygen plasma. Food Microbiology. 46: 383-394 (2015).

    Article  CAS  PubMed  Google Scholar 

  • Jiang L, Zheng R, Sun Q, Li C. Isolation, characterization, and application of Salmonella paratyphi phage KM16 against Salmonella paratyphi biofilm. Biofouling. 37: 276-288 (2021).

    Article  CAS  PubMed  Google Scholar 

  • Jonas K, Tomenius H, Kader A, Normark S, Romling U, Belova LM, Melefors O. Roles of curli, cellulose and bapa in Salmonella biofilm morphology studied by atomic force microscopy. BMC Microbiology. 7: 70 (2007).

    Article  PubMed  PubMed Central  Google Scholar 

  • Jung SJ, Park SY, Ha SD. Synergistic effect of X-ray irradiation and sodium hypochlorite against Salmonella enterica serovar Typhimurium biofilms on quail eggshells. Food Research International. 107: 496-502 (2018).

    Article  CAS  PubMed  Google Scholar 

  • Karabasanavar N, Madhavaprasad C, Gopalakrishna S, Hiremath J, Barbuddhe S. Prevalence of Salmonella serotypes S Enteritidis and S Typhimurium in poultry and poultry products. Journal of Food Safety. 40: e12852 (2020).

    Article  Google Scholar 

  • Kim MJ, Lim ES, Kim JS. Enzymatic inactivation of pathogenic and nonpathogenic bacteria in biofilms in combination with chlorine. Journal of Food Protection. 82: 605-614 (2019a).

    Article  CAS  PubMed  Google Scholar 

  • Kim NN, Kim WJ, Kang SS. Anti-biofilm effect of crude bacteriocin derived from Lactobacillus brevis DF01 on Escherichia coli and Salmonella Typhimurium. Food Control. 98: 274-280 (2019b).

    Article  CAS  Google Scholar 

  • Kim SH, Jyung S, Kang DH. Comparative study of Salmonella Typhimurium biofilms and their resistance depending on cellulose secretion and maturation temperatures. LWT. 154: 112700 (2022).

    Article  CAS  Google Scholar 

  • Koluman A, Dikici A. Antimicrobial resistance of emerging foodborne pathogens: status quo and global trends. Critical Reviews in Microbiology. 39: 57-69 (2013).

    Article  CAS  PubMed  Google Scholar 

  • Lee JE, Lee NK, Paik HD. Antimicrobial and anti-biofilm effects of probiotic Lactobacillus plantarum KU200656 isolated from kimchi. Food Science and Biotechnology. 30: 97-106 (2021).

    Article  CAS  PubMed  Google Scholar 

  • Li JQ, Feng JS, Ma L, Núñez CDLF, Gölz G, Lu XN. Effects of meat juice on biofilm formation of Campylobacter and Salmonella. International Journal of Food Microbiology. 253: 20-28 (2017).

    Article  CAS  PubMed  Google Scholar 

  • Liaqat I, Hussain T, Qurashi AW, Saleem G, Bibi A, Qamar MF, Ali S, Haq IU. Antibiofilm activity of proteolytic enzymes against Salmonella gallinarum isolates from commercial broiler chickens. Pakistan Journal of Zoology. 53: 1111-1118 (2021).

    Article  CAS  Google Scholar 

  • Lin L, Liao X, Li C, Abdel Samie MA, Cui H. Inhibitory effect of cold nitrogen plasma on Salmonella Typhimurium biofilm and its application on poultry egg preservation. LWT - Food Science and Technology 126: 109340 (2020).

    Article  CAS  Google Scholar 

  • Lina M, Francisco P, Fernando MT, Dante JB. Biofilm formation by Salmonella sp. in the poultry industry: detection, control and eradication strategies. Food Research International. 119: 530-540 (2019).

    Article  Google Scholar 

  • Liu Y, McKeever LC, Malik NS. Assessment of the antimicrobial activity of olive leaf extract against foodborne bacterial pathogens. Frontiers Microbiology. 8: 113 (2017).

    Google Scholar 

  • Liu D, Huang Q, Gu W, Zeng XA. A review of bacterial biofilm control by physical strategies. Critical Reviews in Food Science Nutrition. 62: 3453-3470 (2022a).

    Article  CAS  PubMed  Google Scholar 

  • Liu Y, Yan Y, Dong P, Ni L, Luo X, Zhang Y, Zhu L. Inhibitory effects of clove and oregano essential oils on biofilm formation of Salmonella Derby isolated from beef processing plant. LWT. 162: 113486 (2022b).

    Article  CAS  Google Scholar 

  • Lu L, Hu W, Tian Z, Yuan D, Yi G, Zhou Y, Cheng Q, Zhu J, Li M. Developing natural products as potential anti-biofilm agents. Chinese Medicine. 14: 11 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  • Majowicz SE, Musto J, Scallan E, Angulo FJ, Kirk M, O’Brien SJ, Jones TF, Fazil A, Hoekstra RM, The global burden of nontyphoidal Salmonella gastroenteritis. Clinical Infectious Diseases. 50: 882-889 (2010).

    Article  PubMed  Google Scholar 

  • Mangalappalli Illathu AK, Korber DR. Adaptive resistance and differential protein expression of Salmonella enterica serovar Enteritidis biofilms exposed to benzalkonium chloride. Antimicrobial Agents and Chemotherapy. 50: 3588-3596 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Marin C, Hernandiz A, Lainez M. Biofilm development capacity of Salmonella strains isolated in poultry risk factors and their resistance against disinfectants. Poultry Science. 88: 424-431 (2009).

    Article  CAS  PubMed  Google Scholar 

  • Maruzani R, Sutton G, Nocerino P, Marvasi M. Exopolymeric substances (EPS) from Salmonella enterica: polymers, proteins and their interactions with plants and abiotic surfaces. Journal of Microbiology. 57: 1-8 (2019).

    Article  CAS  PubMed  Google Scholar 

  • Meireles A, Borges A, Giaouris E, Simões M. The current knowledge on the application of anti-biofilm enzymes in the food industry. Food Research International. 86: 140-146 (2016).

    Article  CAS  Google Scholar 

  • Merino L, Trejo FM, De Antoni G, Golowczyc MA. Lactobacillus strains inhibit biofilm formation of Salmonella sp. isolates from poultry. Food Research International. 123: 258-265 (2019).

    Article  CAS  PubMed  Google Scholar 

  • Mevo SIU, Ashrafudoulla M, Furkanur Rahaman Mizan M, Park SH, Ha SD. Promising strategies to control persistent enemies: some new technologies to combat biofilm in the food industry-a review. Comprehensive Reviews in Food Science and Food Safety. 20: 5938-5964 (2021).

    Article  PubMed  Google Scholar 

  • Mohammadi Pelarti S, Karimi Zarehshuran L, Babaeekhou L, Ghane M. Antibacterial, anti-biofilm and anti-quorum sensing activities of Artemisia dracunculus essential oil (EO): a study against Salmonella enterica serovar Typhimurium and Staphylococcus aureus. Archives of Microbiology. 203: 1529-1537 (2021).

    Article  CAS  PubMed  Google Scholar 

  • Moradi M, Kousheh SA, Almasi H, Alizadeh A, Guimaraes JT, Yilmaz N, Lotfi A. Postbiotics produced by lactic acid bacteria: the next frontier in food safety. Comprehensive Reviews Food Science Food Safety. 19: 3390-3415 (2020).

    Article  Google Scholar 

  • Nagraj AK and Gokhale D. Bacterial biofilm degradation using extracellular enzymes produced by Penicillium janthinellum EU2D-21 under submerged fermentation. Advances in Microbiology. 8: 687-698 (2018).

    Article  CAS  Google Scholar 

  • Nahar S, Ha AJ, Byun KH, Hossain MI, Mizan MFR, Ha SD. Efficacy of flavourzyme against Salmonella Typhimurium, Escherichia coli, and Pseudomonas aeruginosa biofilms on food-contact surfaces. International Journal of Food Microbiology. 336: 108897 (2021a).

    Article  CAS  PubMed  Google Scholar 

  • Nahar S, Jeong HL, Kim Y, Ha AJ, Roy PK, Park SH, Ashrafudoulla M, Mizan MFR, Ha SD. Inhibitory effects of flavourzyme on biofilm formation, quorum sensing, and virulence genes of foodborne pathogens Salmonella Typhimurium and Escherichia coli. Food Research International. 147: 110461 (2021b).

    Article  CAS  PubMed  Google Scholar 

  • Nair A, Rawool DB, Doijad S, Poharkar K, Mohan V, Barbuddhe SB, Kolhe R, Kurkure NV, Kumar A, Malik SVS, Balasaravanan T. (2015) Biofilm formation and genetic diversity of Salmonella isolates recovered from clinical, food, poultry and environmental sources. Infection, Genetics and Evolution. 36: 424-433.

    Article  PubMed  Google Scholar 

  • Nguyen HDN, Yuk HG. Changes in resistance of Salmonella Typhimurium biofilms formed under various conditions to industrial sanitizers. Food Control. 29: 236-240 (2013).

    Article  CAS  Google Scholar 

  • Niu TX, Wang XN, Wu HY, Bi JR, Hao HS, Hou HM, Zhang GL. Transcriptomic analysis, motility and biofilm formation characteristics of Salmonella Typhimurium exposed to benzyl isothiocyanate treatment. International Journal of Molecular Sciences. 21: 1025 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Obe T, Nannapaneni R, Sharma CS, Kiess A. Homologous stress adaptation, antibiotic resistance, and biofilm forming ability of Salmonella enterica serovar Heidelberg ATCC8326 on different food-contact surfaces following exposure to sublethal chlorine concentrations1. Poultry Science. 97: 951-961 (2018).

    Article  CAS  PubMed  Google Scholar 

  • Obe T, Nannapaneni R, Schilling W, Zhang L, Kiess A. Antimicrobial tolerance, biofilm formation, and molecular characterization of Salmonella isolates from poultry processing equipment. Journal of Applied Poultry Research, 30: 100195 (2021).

    Article  CAS  Google Scholar 

  • Olaimat AN, Holley RA. Factors influencing the microbial safety of fresh produce: a review. Food Microbiology. 32: 1-19 (2012a).

    Article  CAS  PubMed  Google Scholar 

  • Ornellas Dutka Garcia KC, Oliveira Correa IM, Pereira LQ, Silva TM, de Souza Ribeiro Mioni M, de Moraes Izidoro AC, Vellano Bastos IH, Marietto Goncalves GA, Okamoto AS, Andreatti Filho RL. Bacteriophage use to control Salmonella biofilm on surfaces present in chicken slaughterhouses. Poultry Science. 96: 3392-3398 (2017).

    Article  PubMed  Google Scholar 

  • Ozdemir FN, Buzrul S, Ozdemir C, Akcelik N, Akcelik M. Determination of an effective agent combination using nisin against Salmonella biofilm. Archives of Microbiology. 204: 167 (2022).

    Article  CAS  PubMed  Google Scholar 

  • Pande VV, McWhorter AR, Chousalkar KK. (2016) Salmonella enterica isolates from layer farm environments are able to form biofilm on eggshell surfaces. Biofouling, 32: 699-710.

    Article  CAS  PubMed  Google Scholar 

  • Pang, X, Yuk, HG. Effect of Pseudomonas aeruginosa on the sanitizer sensitivity of Salmonella Enteritidis biofilm cells in chicken juice. Food Control. 86: 59-65 (2018).

    Article  CAS  Google Scholar 

  • Pang X, Chen L, Yuk HG. Stress response and survival of Salmonella Enteritidis in single and dual species biofilms with Pseudomonas fluorescens following repeated exposure to quaternary ammonium compounds. International Journal of Food Microbiology. 325: 108643 (2020).

    Article  CAS  PubMed  Google Scholar 

  • Park SY, Jung SJ, Ha SD. Synergistic effects of combined x-ray and aqueous chlorine dioxide treatments against Salmonella Typhimurium biofilm on quail egg shells. LWT - Food Science and Technology. 92: 54-60 (2018).

    Article  CAS  Google Scholar 

  • Patel J, Singh M, Macarisin D, Sharma M, Shelton D. Differences in biofilm formation of produce and poultry Salmonella enterica isolates and their persistence on spinach plants. Food Microbiology. 36: 388-394 (2013).

    Article  PubMed  Google Scholar 

  • Pelyuntha W, Chaiyasut C, Kantachote D, Sirilun S. Cell-free supernatants from cultures of lactic acid bacteria isolated from fermented grape as biocontrol against Salmonella Typhi and Salmonella Typhimurium virulence via autoinducer-2 and biofilm interference. PeerJ. 7: e7555. (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  • Pires SM, Knegt LD, Hald T. Estimation of the relative contribution of different food and animal sources to human Salmonella infections in the European Union. EFSA Supporting Publications. 8: 184E (2011).

    Article  Google Scholar 

  • Pires DP, Melo L, Vilas Boas D, Sillankorva S, Azeredo J. Phage therapy as an alternative or complementary strategy to prevent and control biofilm-related infections. Current Opinion in Microbiology. 39: 48-56 (2017).

    Article  CAS  PubMed  Google Scholar 

  • Pompilio A, Scocchi M, Mangoni ML, Shirooie S, Serio A, Ferreira Garcia da Costa Y, Alves MS, Seker Karatoprak G, Suntar I, Khan H, Di Bonaventura G. Bioactive compounds: a goldmine for defining new strategies against pathogenic bacterial biofilms? Critical Reviews in Microbiology. 49: 117-149 (2023).

    Article  CAS  PubMed  Google Scholar 

  • Rahman MR, Lou Z, Yu F, Wang P, Wang H. Anti-quorum sensing and anti-biofilm activity of Amomum tsaoko (Amommum tsao-ko Crevost et Lemarie) on foodborne pathogens. Saudi Journal of Biological Sciences. 24: 324-330 (2017).

    Article  PubMed  Google Scholar 

  • Ranieri MR, Whitchurch CB, Burrows LL. Mechanisms of biofilm stimulation by subinhibitory concentrations of antimicrobials. Current Opinion in Microbiology. 45: 164-169. (2018).

    Article  CAS  PubMed  Google Scholar 

  • Ripolles Avila C, Ríos-Castillo A, Fontecha-Umaña A, Rodríguez-Jerez J. Removal of Salmonella enterica serovar Typhimurium and Cronobacter sakazakii biofilms from food contact surfaces through enzymatic catalysis. Journal of Food Safety. 40: e12755 (2019).

    Article  Google Scholar 

  • Rojas Puebla I, Gutiérrez báñez AT, Ocaña De Jesús RL, Laguna Cerda, Franco Mora O, Salgado Siclan ML, Bernal Martinez. L R. (2021) Adhesion capacity and biofilm formation by Escherechia coli and Salmonella sp. on tomato (Solanum lycopersicum L.) during the postharvest stage. International Conference on Postharvest and Quality Management of Horticultural Products of Interest for Tropical Regions 1340: 179-184.

    Google Scholar 

  • Romeu MJ, Rodrigues D, Azeredo J. Effect of sub-lethal chemical disinfection on the biofilm forming ability, resistance to antibiotics and expression of virulence genes of Salmonella Enteritidis biofilm-surviving cells. Biofouling. 36: 101-112 (2020).

    Article  CAS  PubMed  Google Scholar 

  • Rossi C, Chaves Lopez C, Serio A, Casaccia M, Maggio F, Paparella A. Effectiveness and mechanisms of essential oils for biofilm control on food-contact surfaces: an updated review. Critical Reviews in Food Science Nutrition. 62: 2172-2191 (2022).

    Article  CAS  PubMed  Google Scholar 

  • Roy PK, Song MG, Park SY. Impact of quercetin against Salmonella Typhimurium biofilm formation on food-contact surfaces and molecular mechanism pattern. Foods. 11: 977 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rudolph G, Schagerlof H, Morkeberg Krogh KB, Jonsson AS, Lipnizki F. Investigations of alkaline and enzymatic membrane cleaning of ultrafiltration membranes fouled by thermomechanical pulping process water. Membranes (Basel). 8: 91 (2018).

    Article  PubMed  Google Scholar 

  • Sadekuzzaman M, Yang S, Mizan MFR, Ha SD. Current and recent advanced strategies for combating biofilms. Comprehensive Reviews in Food Science and Food Safety. 14: 491-509 (2015).

    Article  Google Scholar 

  • Sadekuzzaman M, Mizan MFR, Kim HS, Yang S, Ha SD. Activity of thyme and tea tree essential oils against selected foodborne pathogens in biofilms on abiotic surfaces. LWT - Food Science and Technology. 89: 134-139 (2018).

    Article  CAS  Google Scholar 

  • Sakarikou C, Kostoglou D, Simoes M, Giaouris E. Exploitation of plant extracts and phytochemicals against resistant Salmonella spp. in biofilms. Food Research International. 128: 108806 (2020).

    Article  CAS  PubMed  Google Scholar 

  • Scallan E, Hoekstra RM, Angulo FJ, Tauxe RV, Widdowson MA, Roy SL, Jones JL, Griffin PM. X. Foodborne illness acquired in the united states-major pathogens. Emerging Infectious Diseases. 17: 7-15 (2021).

    Article  Google Scholar 

  • Scher K, Romling U, Yaron S. Effect of heat, acidification, and chlorination on Salmonella enterica serovar Typhimurium cells in a biofilm formed at the air-liquid interface. Applied and Environmental Microbiology. 71: 1163-1168. (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Scribani Rossi C, Barrientos Moreno L, Paone A, Cutruzzola F, Paiardini A, Espinosa Urgel M, Rinaldo S. Nutrient sensing and biofilm modulation: the example of L-arginine in Pseudomonas. International Journal of Molecular Sciences. 23: 4386 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Selim S, Almuhayawi MS, Alqhtani H, Al Jaouni SK, Saleh FM, Warrad M, Hagagy N. (2022) Anti-Salmonella and antibiofilm potency of Salvia officinalis L. essential oil against antibiotic-resistant Salmonella enterica. Antibiotics. 11: 489.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Seo HJ and Kang SS. Inhibitory effect of bacteriocin produced by Pediococcus acidilactici on the biofilm formation of Salmonella Typhimurium. Food Control. 117: 107361 (2020).

    Article  CAS  Google Scholar 

  • Seyedtaghiya MH, Fasaei BN, Peighambari SM. Antimicrobial and antibiofilm effects of Satureja hortensis essential oil against Escherichia coli and Salmonella isolated from poultry. Iranian Journal of Microbiology. 13: 74-80 (2021).

    PubMed  PubMed Central  Google Scholar 

  • Shastry RP, Ghate SD, Banerjee S. Culture dependent and independent detection of multiple extended beta-lactamase producing and biofilm forming Salmonella species from leafy vegetables. Biocatalysis and Agricultural Biotechnology. 38: 102202 (2021).

    Article  CAS  Google Scholar 

  • Simmons EL, Drescher K, Nadell CD, Bucci V. Phage mobility is a core determinant of phage-bacteria coexistence in biofilms. The ISME Joural. 12: 531-543 (2018).

    Article  Google Scholar 

  • Simões LC, Simoes M, Vieira MJ. Adhesion and biofilm formation on polystyrene by drinking water-isolated bacteria. Antonie Van Leeuwenhoek. 98: 317-329 (2010).

    Article  PubMed  Google Scholar 

  • Sivapalasingam S, Friedman CR, Cohen L, Tauxe RV. Fresh produce: a growing cause of outbreaks of foodborne illness in the united states, 1973 through 1997. Journal of Food Protection. 67: 2342-2353 (2004).

    Article  PubMed  Google Scholar 

  • Solano C, García B, Valle J, Berasain C, Ghigo JM, Gamazo C, Lasa I. Genetic analysis of Salmonella Enteritidis biofilm formation: critical role of cellulose. Molecular Microbiology. 43: 793-808 (2002).

    Article  CAS  PubMed  Google Scholar 

  • Srey S, Jahid IK, Ha SD. Biofilm formation in food industries: a food safety concern. Food Control. 31: 572-585 (2013).

    Article  Google Scholar 

  • Steenackers H, Hermans K, Vanderleyden J, De Keersmaecker SCJ. Salmonella biofilms: an overview on occurrence, structure, regulation and eradication. Food Research International. 45: 502-531 (2012).

    Article  CAS  Google Scholar 

  • Stepanovic S, Cirkovic I, Ranin L, Svabic Vlahovic M. (2004) Biofilm formation by Salmonella spp. and Listeria monocytogenes on plastic surface. Letters in Applied Microbiology. 38: 428-432.

    Article  CAS  PubMed  Google Scholar 

  • Strantzali D, Kostoglou D, Perikleous A, Zestas M, Ornithopoulou S, Dubois-Brissonnet F, Giaouris E. Comparative assessment of the disinfection effectiveness of thymol and benzalkonium chloride against adapted and non-adapted to thymol biofilm cells of a Salmonella Typhimurium epidemic phage type DT193 strain. Food Control. 129: 108239 (2021).

    Article  CAS  Google Scholar 

  • Sun J, Sun Z, Wang D, Liu F, Wang D. Contribution of ultrasound in combination with chlorogenic acid against Salmonella Enteritidis under biofilm and planktonic condition. Microbial Pathogenesis. 165: 105489 (2022).

    Article  CAS  PubMed  Google Scholar 

  • Tabak M, Scher K, Hartog E, Romling U, Matthews KR, Chikindas ML, Yaron S. Effect of triclosan on Salmonella Typhimurium at different growth stages and in biofilms. FEMS Microbiology Letters. 267: 200-206 (2007).

    Article  CAS  PubMed  Google Scholar 

  • Tazehabadi MH, Algburi A, Popov IV, Ermakov AM, Chistyakov VA, Prazdnova EV, Weeks R, Chikindas ML. Probiotic bacilli inhibit Salmonella biofilm formation without killing planktonic cells. Frontiers Microbiology. 12: 615328 (2021).

    Article  Google Scholar 

  • Tokam Kuate CR, Bisso Ndezo B, Dzoyem JP. (2021) Synergistic antibiofilm effect of thymol and piperine in combination with aminoglycosides antibiotics against four Salmonella enterica serovars. Evidence-Based Complementary Alternative Medicine. 2021: 1567017.

    Article  PubMed  PubMed Central  Google Scholar 

  • Toushik SH, Mizan MFR, Hossain MI, Ha SD. Fighting with old foes: the pledge of microbe-derived biological agents to defeat mono- and mixed-bacterial biofilms concerning food industries. Trends in Food Science Technology. 99: 413-425 (2020).

    Article  CAS  Google Scholar 

  • Troller JA. Sanitation in food processing (2nd ed.), Academic Press, San Diego, CA (2012).

  • Trmcic A, Chen H, Trzaskowska M, Tamber S, Wang S. Biofilm-forming capacity of five Salmonella Strains and their fate on postharvest mini cucumbers. Journal of Food Protection. 81: 1871-1879. (2018).

    Article  PubMed  Google Scholar 

  • Verma P, Saharan VV, Nimesh S, Singh AP. Phenotypic and virulence traits of Escherichia coli and Salmonella strains isolated from vegetables and fruits from india. Journal of Applied Microbiology. 125: 270-281 (2018).

    Article  CAS  PubMed  Google Scholar 

  • Vestby LK, Moretro T, Langsrud S, Heir E, Nesse LL. Biofilm forming abilities of Salmonella are correlated with persistence in fish meal- and feed factories. BMC Veterinary Research. 5: 20. (2009).

    Article  PubMed  PubMed Central  Google Scholar 

  • Villa Rojas R, Zhu MJ, Paul NC, Gray P, Xu J, Shah DH, Tang J. Biofilm forming Salmonella strains exhibit enhanced thermal resistance in wheat flour. Food Control. 73: 689-695 (2017).

    Article  CAS  Google Scholar 

  • Vishwakarma JVLS. (2020) Unraveling the anti-biofilm potential of green algal sulfated polysaccharides against Salmonella enterica and Vibrio harveyi. Applied Microbiology and Biotechnology. 104: 6299-6314.

    Article  CAS  PubMed  Google Scholar 

  • Von Hertwig AM, Prestes FS, Nascimento MS. Biofilm formation and resistance to sanitizers by Salmonella spp. Isolated from the peanut supply chain. Food Research International. 152: 110882 (2022).

    Article  Google Scholar 

  • Wagenaar JA, Hendriksen RS, Carrique Mas J. Practical considerations of surveillance of Salmonella serovars other than Enteritidis and Typhimurium. Revue Scientifique et Technique-Office International des Epizooties. 32: 509-519. (2013).

    Article  CAS  Google Scholar 

  • Wang HH, Ye KP, Wei XR, Cao JX, Xu XL, Zhou GH. Occurrence, antimicrobial resistance and biofilm formation of Salmonella isolates from a chicken slaughter plant in China. Food Control. 33: 378-384 (2013).

    Article  CAS  Google Scholar 

  • Wang H, Zhang X, Zhang Q, Ye K, Xu X, Zhou G. Comparison of microbial transfer rates from Salmonella spp. biofilm growth on stainless steel to selected processed and raw meat. Food Control. 50: 574-580 (2015).

    Article  CAS  Google Scholar 

  • Wang R, Schmidt JW, Harhay DM, Bosilevac JM, King DA, Arthur TM. Biofilm formation, antimicrobial resistance, and sanitizer tolerance of Salmonella enterica strains isolated from beef trim. Foodborne Pathogens and Disease, 14: 687-695 (2017a).

    Article  CAS  PubMed  Google Scholar 

  • Wang F, Wei F, Song C, Jiang B, Tian S, Yi J, Yu C, Song Z, Sun L, Bao Y, Wu Y, Huang Y, Li Y. Dodartia orientalis L. essential oil exerts antibacterial activity by mechanisms of disrupting cell structure and resisting biofilm. Industrial Crops and Products. 109: 358-366 (2017b).

    Article  CAS  Google Scholar 

  • Wang R, King DA, Kalchayanand N. Evaluation of Salmonella biofilm cell transfer from common food contact surfaces to beef products. Journal of Food Protection, 85: 632-638 (2022).

    Article  CAS  PubMed  Google Scholar 

  • Wirtanen G and Salo S. Disinfection in food processing—efficacy testing of disinfectants. Reviews in Environmental Science and Biotechnology. 2: 293-306. (2003).

    Article  CAS  Google Scholar 

  • Wong HS, Townsend KM, Fenwick SG, Maker G, Trengove RD, O’Handley RM. Comparative susceptibility of Salmonella Typhimurium biofilms of different ages to disinfectants. Biofouling. 26: 859-864 (2010).

    Article  CAS  PubMed  Google Scholar 

  • Xiang YZ, Zhang YM, Liu YY, Zhang M, Lin LB, Zhang QL. Purification, characterization, and antibacterial and antibiofilm activity of a novel bacteriocin against Salmonella Enteritidis. Food Control. 127: 108110 (2021).

    Article  CAS  Google Scholar 

  • Xu JG, Hu HX, Chen JY, Xue YS, Kodirkhonov B, Han BZ. (2022) Comparative study on inhibitory effects of ferulic acid and p-coumaric acid on Salmonella Enteritidis biofilm formation. World Journal of Microbiology and Biotechnology. 38: 136.

    Article  CAS  PubMed  Google Scholar 

  • Yang Y, Mikš Krajnik M, Zheng Q, Lee SB, Lee SC, Yuk HG. Biofilm formation of Salmonella Enteritidis under food-related environmental stress conditions and its subsequent resistance to chlorine treatment. Food Microbiology. 54: 98-105 (2016).

    Article  CAS  Google Scholar 

  • Yang Y, Hoe YW, Zheng Q, Chung HJ, Yuk HG. Biofilm formation by Salmonella Enteritidis in a simulated liquid egg processing environment and its sensitivity to chlorine and hot water treatment. Food Control. 73: 595-600 (2017).

    Article  CAS  Google Scholar 

  • Yaron S, Romling U. Biofilm formation by enteric pathogens and its role in plant colonization and persistence. Molecular Microbiology. 7: 496-516 (2014).

    Google Scholar 

  • Yin B, Zhu LX, Zhang YM, Dong PC, Mao YW. The characterization of biofilm formation and detection of biofilm-related genes in Salmonella isolated from beef processing plants. Foodborne Pathogens and Disease. 15: 1-7 (2018).

    Article  Google Scholar 

  • Yu H, Liu Y, Li L, Guo Y, Xie Y, Cheng Y, Yao W. Ultrasound-involved emerging strategies for controlling foodborne microbial biofilms. Trends in Food Science & Technology. 96: 91-101 (2020).

    Article  CAS  Google Scholar 

  • Yuksel FN, Buzrul S, Akcelik M, Akcelik N. Inhibition and eradication of Salmonella Typhimurium biofilm using P22 bacteriophage, EDTA and nisin. Biofouling. 34: 1046-1054 (2018).

    Article  CAS  PubMed  Google Scholar 

  • Zhang H, Chen SP, Seck HL, Zhou W. Low-energy X-ray inactivation of Salmonella Enteritidis on shell eggs in mono-/co-culture biofilms with Pseudomonas fluorescens. Food Control. 123: 107742 (2021a).

    Article  CAS  Google Scholar 

  • Zhang J, Wang D, Sun J, Sun Z, Liu F, Du L, Wang D. Synergistic antibiofilm effects of ultrasound and phenyllactic acid against Staphylococcus aureus and Salmonella Enteritidis. Foods. 10: 2171. (2021b).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ziech RE, Perin AP, Lampugnani C, Sereno MJ, Viana C, Soares VM, Pereira JG, Pinto JPdAN, Bersot LdS. Biofilm-producing ability and tolerance to industrial sanitizers in Salmonella spp. isolated from Brazilian poultry processing plants. LWT Food Science and Technology. 68: 85-90 (2016).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The following funding sources are gratefully acknowledged: National Natural Science Foundation of China (32102108), Natural Science Foundation of the Higher Education Institutions of Jiangsu Province, China (21KJB550005), Jiangsu Agricultural Science and Technology Innovation Fund, China CX(21)3051. Basic Science Research Program through the National Research Foundation of Korea (NRF) funded by the Ministry of Education (No. 2021R1A6A1A03046418).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hyun-Gyun Yuk.

Ethics declarations

Conflict of interest

The authors declare no conflict of interest.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pang, X., Hu, X., Du, X. et al. Biofilm formation in food processing plants and novel control strategies to combat resistant biofilms: the case of Salmonella spp.. Food Sci Biotechnol 32, 1703–1718 (2023). https://doi.org/10.1007/s10068-023-01349-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10068-023-01349-3

Keywords

Navigation