Skip to main content
Log in

Prevalence of antibiotic resistance in lactic acid bacteria isolated from traditional fermented Indian food products

  • Research Article
  • Published:
Food Science and Biotechnology Aims and scope Submit manuscript

Abstract

The emergence of antimicrobial resistance (AMR) in lactic acid bacteria (LAB) raises questions on qualified presumptive safety status and poses challenge of AMR transmission in food milieu. This study focuses on isolation, identification and characterization of AMR in LAB prevalent in traditional fermented Indian food products. The analysis of 16SrRNA based phylogenetic tree showed placements of isolates among four different genera Lactobacillus, Enterococcus, Weissella and Leuconostoc. In E-strip gradient test of susceptibility to 14 different antibiotics, over 50% of isolates showed resistance to ampicillin, chloramphenicol, ciprofloxacin, erythromycin, kanamycin, linezolid, streptomycin, trimethoprim and vancomycin. A multivariate principal component analysis, an antibiogram and multiple antibiotic resistance index-values (> 0.2) indicated presence of multidrug-resistance among the isolates. This study reports prevalence of an alarmingly high rate of AMR LAB strains in traditional fermented foods and is important to regulators and public health authorities for developing strategies to control transmission in food systems.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Abriouel H, Casado Muñoz M del C, Lavilla Lerma L, Pérez Montoro B, Bockelmann W, Pichner R, Kabisch J, Cho GS, Franz CMAP, Gálvez A, Benomar N. New insights in antibiotic resistance of Lactobacillus species from fermented foods. Food Research International. 78: 465-481 (2015)

    Article  CAS  PubMed  Google Scholar 

  • Altschul SF, Gish W, Miller W, Myers EW, Lipman DJ. Basic local alignment search tool. Journal of Molecular Biology. 215: 403-410 (1990)

    Article  CAS  PubMed  Google Scholar 

  • Alvarez-Cisneros YM, Fernández FJ, Sainz-Espuñez T, Ponce-Alquicira E. Assessment of virulence factors, antibiotic resistance and amino-decarboxylase activity in Enterococcus faecium MXVK29 isolated from Mexican chorizo. Letters in Applied Microbiology. 64: 171-176 (2017)

    Article  CAS  PubMed  Google Scholar 

  • Álvarez-cisneros YM, Ponce-alquicira E. (2021) Antibiotic resistance in lactic acid bacteria: a review. International Journal of Biology, Pharmacy and Allied Sciences.  Doi: 10.5772/intechopen.80624

    Article  Google Scholar 

  • Alves MS, Pereira A, Araújo SM, Castro BB, Correia ACM, Henriques I. Seawater is a reservoir of multi-resistant Escherichia coli, including strains hosting plasmid-mediated quinolones resistance and extended-spectrum beta-lactamases genes. Frontiers in Microbiology. 5: 1-10 (2014)

    Article  Google Scholar 

  • Ammor MS, Belén Flórez A, Mayo B. Antibiotic resistance in non-enterococcal lactic acid bacteria and bifidobacteria. Food Microbiology. 24: 559-570 (2007)

  • Anisimova E, Yarullina D. Characterization of erythromycin and tetracycline resistance in Lactobacillus fermentum strains. International Journal of Microbiology. 11: 2018: (2018)

    Google Scholar 

  • Anisimova E, Yarullina D. Antibiotic resistance of Lactobacillus strains. Current Microbiology. 76: 1407-1416 (2019)

    Article  CAS  PubMed  Google Scholar 

  • Ashraf R, Shah NP. Antibiotic resistance of probiotic organisms and safety of probiotic dairy products. International Food Research Journal. 18: 837-853 (2011)

  • Bellanger X, Payot S, Leblond-Bourget N, Guédon G. Conjugative and mobilizable genomic islands in bacteria: evolution and diversity. FEMS Microbiology Reviews. 38(4): 720-760 (2014)

  • Bhushan B, Sakhare SM, Narayan KS, Kumari M, Mishra V, Dicks LMT. Characterization of riboflavin producing strains of Lactobacillus plantarum as potential probiotic candidate through in vitro assessment and principal component analysis. Probiotics and Antibiotic Proteins. 13: 453-467 (2021)

    Article  CAS  Google Scholar 

  • Blair JMA, Webber MA, Baylay AJ, Ogbolu DO, Piddock LJV. Molecular mechanisms of antibiotic resistance. Nature Reviews Microbiology. 13: 42-51 (2015)

    Article  CAS  PubMed  Google Scholar 

  • Blanco-Picazo P, Gómez-Gómez C, Morales-Cortes S, Muniesa M, Rodríguez-Rubio L. Antibiotic resistance in the viral fraction of dairy products and a nut-based milk. International Journal of Food Microbiology. 367: 109-590 (2022)

    Article  CAS  PubMed  Google Scholar 

  • Campedelli I, Mathur H, Salvetti E, Clarke S, Rea MC, Torriani S, Ross RP, Hill C, O’Toole PW. Genus-wide assessment of antibiotic resistance in Lactobacillus spp. Applied and Environmental Microbiology. 85 (2019)

  • Casado Muñoz M del C, Benomar N, Lerma LL, Gálvez A, Abriouel H. Antibiotic resistance of Lactobacillus pentosus and Leuconostoc pseudomesenteroides isolated from naturally-fermented Aloreña table olives throughout fermentation process. International Journal of Food Microbiology. 172: 110-118 (2014)

    Article  PubMed  Google Scholar 

  • Chandra S, Thumu R, Halami PM. Presence of erythromycin and tetracycline resistance genes in lactic acid bacteria from fermented foods of Indian origin. Antonie Van Leewenhoek. 102: 541-551 (2012)

    Article  Google Scholar 

  • Charteris WP, Kelly HPM, Morelli L, Collins JK. Antibiotic susceptibility of potentially probiotic Lactobacillus species. Journal of Food Protection. 61: 1636-1643 (1998)

    Article  CAS  PubMed  Google Scholar 

  • Costa da MC, Cruz AIC, Bispo da ASR, Ferreira MA, Costa JA, Evangelista-Barreto NS. Occurrence and antimicrobial resistance of bacteria in retail market spices. Ciência Rural. 17: 50 (2020)

    Google Scholar 

  • Danielsen M, Wind A. Susceptibility of Lactobacillus spp. to antimicrobial agents. International Journal of Food Microbiology. 82: 1-11 (2003)

    Article  CAS  PubMed  Google Scholar 

  • Das DJ, Shankar A, Johnson JB, Thomas S. Critical insights into antibiotic resistance transferability in probiotic Lactobacillus. Nutrition. 69: 110567 (2020)

    Article  CAS  PubMed  Google Scholar 

  • Dec M, Nowaczek A, Stȩpień-Pyśniak D, Wawrzykowski J, Urban-Chmiel R. Identification and antibiotic susceptibility of lactobacilli isolated from turkeys. BMC Microbiology. 18: 1-14 (2018)

    Article  Google Scholar 

  • Devirgiliis C, Coppola D, Barile S, Colonna B, Perozzi G. Characterization of the Tn916 conjugative transposon in a food-borne strain of Lactobacillus paracasei. Applied and Environmental Microbiology. 75: 3866-3871 (2009)

  • Dutta S, Ramamurthy T. Influence of abiotic factors in the emergence of antibiotic resistance. Antimicrobial Resistance.  (2020) Doi: 10.1007/978-981-15-3658-8_4

    Article  Google Scholar 

  • Eaton TJ, Gasson MJ. Molecular screening of Enterococcus virulence determinants and potential for genetic exchange between food and medical isolates. Applied and Environmental Microbiology. 67: 1628–1635 (2001)

  • Egervärn M, Lindmark H, Roos S, Huys G, Lindgren S. Effects of inoculum size and incubation time on broth microdilution susceptibility testing of lactic acid bacteria. Antimicrobial Agents and Chemotherapy. 51: 394–396 (2007)

  • Erginkaya Z, Turhan EU, Tatli D. Determination of antibiotic resistance of lactic acid bacteria isolated from traditional Turkish fermented dairy products. Iranian Journal of Veterinary Research. 19: 53-56 (2018)

    CAS  PubMed  PubMed Central  Google Scholar 

  • European Food Safety Authority (EFSA). European Food Safety Authority, EFSA panel on additives and products or substances used in animal feed (FEEDAP). Scientific opinion guidance on the assessment of bacterial susceptibility to antimicrobials of human and veterinary importance. EFSA Journal. 10: 2740 (2012)

    Google Scholar 

  • Flórez AB, Ammor MS, Mayo B. Identification of tet(M) in two Lactococcus lactis strains isolated from a Spanish traditional starter-free cheese made of raw milk and conjugative transfer of tetracycline resistance to lactococci and enterococci. International Journal of Food Microbiology. 121: 189-194 (2008)

    Article  PubMed  Google Scholar 

  • Flórez AB, Campedelli I, Delgado S, Alegría Á, Salvetti E, Felis GE, Mayo B, Torriani S. Antibiotic susceptibility profiles of dairy Leuconostoc, analysis of the genetic basis of atypical resistances and transfer of genes in vitro and in a food matrix. PLoS ONE. 11: 1-20 (2016)

    Article  Google Scholar 

  • Flórez AB, Delgado S, Mayo B. Antimicrobial susceptibility of lactic acid bacteria isolated from a cheese environment. Canadian Journal of Microbiology. 51: 51-58 (2005)

    Article  PubMed  Google Scholar 

  • Founou LL, Founou RC, Essack SY. Antibiotic resistance in the food chain: A developing country-perspective. Frontiers in Microbiology. 7: 1-19 (2016)

    Article  Google Scholar 

  • Fusco V, Quero GM, Cho G, Kabisch J, Meske D, Neve H, Bockelmann W, Franz CMAP. The genus Weissella : taxonomy, ecology and biotechnological potential. Frontiers in Microbiology. 6: 155 (2015)

    Article  PubMed  PubMed Central  Google Scholar 

  • Gazzola S, Fontana C, Bassi D Cocconcelli PS. Assessment of tetracycline and erythromycin resistance transfer during sausage fermentation by culture-dependent and -independent methods. Food Microbiology. 30: 348–354 (2012)

    Article  CAS  PubMed  Google Scholar 

  • Generally Recognized as Safe (GRAS) | FDA. Available from: https://www.fda.gov/food/food-ingredients-packaging/generally-recognized-safe-gras. Accessed December 16, 2021

  • Gevers D, Huys G, Swings J. In vitro conjugal transfer of tetracycline resistance from Lactobacillus isolates to other Gram-positive bacteria. FEMS Microbiology Letters. 225: 125-130 (2003)

    Article  CAS  PubMed  Google Scholar 

  • Gueimonde M, Sánchez B, Reyes-gavilán CGDL, Margolles A. Antibiotic resistance in probiotic bacteria. Frontiers in Microbiology. 4 (2013)

  • Guo H, Pan L, Li L, Lu J, Kwok L, Menghe B, Zhang H, Zhang W. Characterization of antibiotic resistance genes from Lactobacillus isolated from traditional dairy products. Journal of Food Science 82: 724-730 (2017)

    Article  CAS  PubMed  Google Scholar 

  • György É, Laslo É, Antal M, András CD. Antibiotic resistance pattern of the allochthonous bacteria isolated from commercially available spices. Food Science and Nutrition. 9: 4550-4560 (2021)

    Article  PubMed  PubMed Central  Google Scholar 

  • Hammer, Øyvind, David AT Harper, Paul D. Ryan. PAST: Paleontological statistics software package for education and data analysis. Palaeontologia electronica 4:9 (2001)

    Google Scholar 

  • Hana J, Chena D, Lic S, Lia X, Zhoud WW, Zhangb B, Jiaa Y. Antibiotic susceptibility of potentially probiotic Lactobacillus strains. Italian Journal of Food Science. 27: 282-289 (2015)

    Google Scholar 

  • Hanchi H, Mottawea W, Sebei K, Hammami R. The genus Enterococcus: between probiotic potential and safety concerns—An Update. Frontiers in Microbiology. 9: 1791 (2018)

    Article  PubMed  PubMed Central  Google Scholar 

  • Jacobsen L, Wilcks A, Hammer K, Huys G, Gevers D, Andersen SR. (2007) Horizontal transfer of tet(M) and erm(B) resistance plasmids from food strains of Lactobacillus plantarum to Enterococcus faecalis JH2-2 in the gastrointestinal tract of gnotobiotic rats. FEMS Microbiology Ecology. 59: 158-166

    Article  CAS  PubMed  Google Scholar 

  • Jang Y, Gwon H, Jeong W, Yeo S, Kim S. Safety Evaluation of Weissella cibaria JW15 by phenotypic and genotypic property analysis. Microorganisms. 9: 2450 (2021)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kappell AD, De Nies MS, Ahuja NH, Ledeboer NA, Newton RJ, Hristova KR. Detection of multi-drug resistant Escherichia coli in the urban waterways of Milwaukee, WI. Frontiers in Microbiology. 6: 336 (2015)

    PubMed  Google Scholar 

  • Krawczyk B, Wityk P, Gałecka M, Michalik M. The many faces of Enterococcus spp.—commensal, probiotic and opportunistic pathogen. Microorganisms. 9:1900 (2021)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kumar S, Stecher G, Tamura K. MEGA7: molecular evolutionary genetics analysis version 7.0 for bigger datasets. Molecular Biology and Evolution. 33: 1870-1874 (2016)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Landers TF, Cohen B, Wittum TE, Larson EL. A review of antibiotic use in food animals: perspective, policy, and potential. Public Health Reports. 127: 4–22 (2012)

    Article  PubMed  PubMed Central  Google Scholar 

  • Lin J, Nishino K, Roberts MC, Tolmasky M, Aminov RI, Zhang L. Mechanisms of antibiotic resistance. Frontiers in Microbiology. 6: 2013-2015 (2015)

    Article  Google Scholar 

  • Mathur S, Singh R. Antibiotic resistance in food lactic acid bacteria - a review. International Journal of Food Microbiology. 105: 281-295 (2005)

    Article  CAS  PubMed  Google Scholar 

  • Miller WR, Munita JM, Arias CA. Mechanisms of antibiotic resistance in enterococci. Expert Review of Anti-Infective Therapy. 12: 1221-1236 (2014)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mohammed S, Çon AH. Isolation and characterization of potential probiotic lactic acid bacteria from traditional cheese. Lwt. 152: 112319 (2021)

    Article  CAS  Google Scholar 

  • Nataraj BH, Ramesh C, Mallappa RH. Characterization of antibiotic resistance and virulence traits present in clinical methicillin-resistant Staphylococcus aureus isolates. Current Microbiology. 78: 2001-2014 (2021)

    Article  CAS  PubMed  Google Scholar 

  • Nawaz M, Wang J, Zhou A, Ma C, Wu X, Moore JE, Millar BC, Xu J. Characterization and transfer of antibiotic resistance in lactic acid bacteria from fermented food products. Current Microbiology. 62: 1081-1089 (2011)

    Article  CAS  PubMed  Google Scholar 

  • Holland R, Liu SQ. Lactic acid bacteria - Leuconostoc spp. Encyclopedia of Dairy Sciences 138-142 (2011)

  • Nunziata L, Brasca M, Morandi S, Silvetti T. Antibiotic resistance in wild and commercial non-enterococcal lactic acid bacteria and bifidobacteria strains of dairy origin: an update. Food Microbiology. 104: 103999 (2022)

    Article  CAS  PubMed  Google Scholar 

  • Ojha AK, Shah NP, Mishra V. Conjugal transfer of antibiotic resistances in Lactobacillus spp. Current Microbiology. 78: 2839-2849 (2021)

    Article  CAS  PubMed  Google Scholar 

  • Pospiech A, Neumann B. A versatile quick-prep of genomic DNA from Gram-positive bacteria. Trends in Genetics. 11: 217-218 (1995)

    Article  CAS  PubMed  Google Scholar 

  • Preethi C, Thumu SCR, Halami PM. Occurrence and distribution of multiple antibiotic-resistant Enterococcus and Lactobacillus spp. from Indian poultry: in vivo transferability of their erythromycin, tetracycline and vancomycin resistance. Annals of Microbiology. 67: 395-404 (2017)

    Article  CAS  Google Scholar 

  • Sachi S, Ferdous J, Sikder MH, Hussani SMAK. Antibiotic residues in milk: past, present, and future. Journal of Advanced Veterinary and Animal Research. 6: 315-332 (2019)

    Article  PubMed  PubMed Central  Google Scholar 

  • Saeed RM, Elyas YYA, Yousif NME, Eltayeb MM, Ahmed IAM. Incidence of antibiotic resistance of lactic acid bacteria (LAB) isolated from various Sudanese fermented foods. Journal of Food & Nutritional Disorders. 3: 6 (2014)

    Google Scholar 

  • Stefańska I, Kwiecień E, Jóźwiak-Piasecka K, Garbowska M, Binek M, Rzewuska M. Antimicrobial susceptibility of lactic acid bacteria strains of potential use as feed additives - the basic safety and usefulness criterion. Frontiers in Veterinary Science. 8: 1-11 (2021)

    Article  Google Scholar 

  • Tan TY. Use of molecular techniques for the detection of antibiotic resistance in bacteria. Expert Review of Molecular Diagnostics. 3: 93-103 (2003)

    Article  CAS  PubMed  Google Scholar 

  • Thapa SP, Shrestha S, Anal AK. Addressing the antibiotic resistance and improving the food safety in food supply chain (farm-to-fork) in Southeast Asia. Food Control. 108: 106809 (2020)

    Article  CAS  Google Scholar 

  • Thumu SCR, Halami PM. Conjugal transfer of erm(B) and multiple tet genes from Lactobacillus spp. to bacterial pathogens in animal gut, in vitro and during food fermentation. Food Research International. 116: 1066-1075 (2019)

    Article  CAS  PubMed  Google Scholar 

  • Wang K, Zhang H, Feng J, Ma L, Fuente-Núñez C de la, Wang S, Lu X. Antibiotic resistance of lactic acid bacteria isolated from dairy products in Tianjin, China. Journal of Agriculture and Food Research. 1: 100006 (2019)

    Article  Google Scholar 

  • Von Wintersdorff CJH, Penders J, Van Niekerk JM, Mills ND, Majumder S, Van Alphen LB, Savelkoul PHM, Wolffs PFG. Dissemination of antimicrobial resistance in microbial ecosystems through horizontal gene transfer. Frontiers in Microbiology. 7: 1-10 (2016)

    Google Scholar 

  • Zarzecka U, Chajęcka-Wierzchowska W, Zadernowska A. Microorganisms from starter and protective cultures - occurrence of antibiotic resistance and conjugal transfer of tet genes in vitro and during food fermentation. Lwt. 153: 112-490 (2022)

    Article  CAS  Google Scholar 

  • Zarzecka U, Zadernowska A, Wierzchowska WC. Starter cultures as a reservoir of antibiotic resistant microorganisms. Lwt. 127: 109424 (2020)

    Article  CAS  Google Scholar 

  • Zheng J, Wittouck S, Salvetti E, Franz CMAP, Harris HMB, Mattarelli P, O’toole PW, Pot B, Vandamme P, Walter J, Watanabe K, Wuyts S, Felis GE, Gänzle MG, Lebeer S. A taxonomic note on the genus Lactobacillus: description of 23 novel genera, emended description of the genus Lactobacillus Beijerinck 1901, and union of Lactobacillaceae and Leuconostocaceae. International Journal of Systematic and Evolutionary Microbiology. 70: 2782-2858 (2020)

    Article  CAS  PubMed  Google Scholar 

  • Zonenschain D, Rebecchi A, Morelli L. Erythromycin and tetracycline resistant lactobacilli in Italian fermented dry sausages. Journal of Applied Microbiology. 107: 1559-1568 (2009)

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We are thankful to Dr. Barjinder Pal Kaur, Department of Food Engineering, NIFTEM for support in PCA analysis. The technical support of Mr. Rishi Bhatia and Dr. Kuljinder Kaur, Microbiology lab is duly acknowledged.

Funding

The work is funded by the National Institute of Food Technology Entrepreneurship and Management (NIFTEM) Kundli, Sonepat (India).

Author information

Authors and Affiliations

Authors

Contributions

AKO contributed to conceiving, data acquisition and writing the manuscript. NPS carried out analysis, data interpretation and critical revision. NE contributed to refining the manuscript. VM conceived the research work. NKT analyzed, interpreted, refined and critically revised the manuscript. All authors have read and approved the manuscript.

Corresponding author

Correspondence to Neetu Kumra Taneja.

Ethics declarations

Conflicts of interest

There is no declared conflict of interest.

Ethics approval

The paper does not contain any study on human participants or animals.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 740 kb)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ojha, A.K., Shah, N.P., Mishra, V. et al. Prevalence of antibiotic resistance in lactic acid bacteria isolated from traditional fermented Indian food products. Food Sci Biotechnol 32, 2131–2143 (2023). https://doi.org/10.1007/s10068-023-01305-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10068-023-01305-1

Keywords

Navigation