Skip to main content
Log in

Whole-cell bioconversion using non-Leloir transglycosylation reactions: a review

  • Review
  • Published:
Food Science and Biotechnology Aims and scope Submit manuscript

Abstract

Microbial biocatalysts are evolving technological tools for glycosylation research in food, feed and pharmaceuticals. Advances in bioengineered Leloir and non-Leloir carbohydrate-active enzymes allow for whole-cell biocatalysts to curtail production costs of purified enzymes while enhancing glucan synthesis through continued enzyme expression. Unlike sugar nucleotide-dependent Leloir glycosyltransferases, non-Leloir enzymes require inexpensive sugar donors and can be designed to match the high value, yield and selectivity of the former. This review addresses the current state of bacterial cell-based production of glucans and glycoconjugates via transglycosylation, and describes how alterations made to microbial hosts to surpass purified enzymes as the preferred mode of catalysis are steadily being acquired through genetic engineering, rational design and process optimization. A comprehensive exploration of relevant literature has been summarized to describe whole-cell biocatalysis in non-Leloir glycosylation reactions with various donors and acceptors, and the characterization, application and latest developments in the optimization of their use.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Anteneh YS, Franco CMM. Whole cell actinobacteria as biocatalysts. Frontiers in Microbiology. 10: 77 (2019)

    Article  PubMed  PubMed Central  Google Scholar 

  • Ardèvol A, Rovira C. Reaction mechanisms in carbohydrate-active enzymes: glycoside hydrolases and glycosyltransferases. Insights from ab initio quantum mechanics/molecular mechanics dynamic simulations. Journal of the American Chemical Society. 137: 7528-7547 (2015)

    Article  PubMed  Google Scholar 

  • Bolon DN, Voigt CA, Mayo SL. De novo design of biocatalysts. Current Opinion in Chemical Biology. 6: 125-129 (2002)

    Article  CAS  PubMed  Google Scholar 

  • Brown TA. Gene cloning. Chapman and Hall, London (1990)

    Google Scholar 

  • Buchholz K, Kasche V, Bornscheuer UT. Biocatalysts and enzyme technology. John Wiley & Sons, Weinheim, Germany (2012)

    Google Scholar 

  • Castillo E, Iturbe F, Lopez‐Munguia A, Pelenc V, Paul F, Monsan P. Dextran and oligosaccharide production with glucosyltransferases from different strains of Leuconostoc mesenteroides. Annals of the New York Academy of Sciences. 672: 425-430 (1992)

    Article  CAS  Google Scholar 

  • Chan-Yao-Chong M, Durand D, Ha-Duong T. Molecular dynamics simulations combined with nuclear magnetic resonance and/or small-angle X-ray scattering data for characterizing intrinsically disordered protein conformational ensembles. Journal of Chemical Information and Modeling. 59: 1743-1758 (2019)

    Article  CAS  PubMed  Google Scholar 

  • Cheng J, Luo Q, Duan H, Peng H, Zhang Y, Hu J, Lu Y. Efficient whole-cell catalysis for 5-aminovalerate production from L-lysine by using engineered Escherichia coli with ethanol pretreatment. Scientific Reports. 10: 1-9 (2020)

    Google Scholar 

  • Chin Y-W, Jang S-W, Shin H-S, Kim T-W, Kim S-K, Park C-S, Seo D-H. Heterologous expression of Deinococcus geothermalis amylosucrase in Corynebacterium glutamicum for luteolin glucoside production. Enzyme and Microbial Technology. 135: 109505 (2020)

    Article  CAS  PubMed  Google Scholar 

  • Chokhawala H, Chen X. Enzymatic approaches to O-glycoside introduction: glycosyltransferases. Comprehensive Glycoscience. 1: 415-451 (2007)

    Article  CAS  Google Scholar 

  • Dahiya S, Ojha S, Mishra S. Biotransformation of sucrose into hexyl-α-D-glucopyranoside and-polyglucosides by whole cells of Microbacterium paraoxydans. Biotechnology Letters. 37: 1431-1437 (2015)

    Article  CAS  PubMed  Google Scholar 

  • Das S, Rosazza JP. Microbial and enzymatic transformations of flavonoids. Journal of Natural Products. 69: 499-508 (2006)

    Article  CAS  PubMed  Google Scholar 

  • Das-Bradoo S, Svensson I, Santos J, Plieva F, Mattiasson B, Hatti-Kaul R. Synthesis of alkylgalactosides using whole cells of Bacillus pseudofirmus species as catalysts. Journal of Biotechnology. 110: 273-286 (2004)

    Article  CAS  PubMed  Google Scholar 

  • De Carvalho CC. Enzymatic and whole cell catalysis: finding new strategies for old processes. Biotechnology Advances. 29: 75-83 (2011)

    Article  PubMed  Google Scholar 

  • Dennewald D, Pitner W-R, Weuster-Botz D. Recycling of the ionic liquid phase in process integrated biphasic whole-cell biocatalysis. Process Biochemistry. 46: 1132-1137 (2011)

    Article  CAS  Google Scholar 

  • Farkaš V, Vadinová K, Stratilová E. Polysaccharide Transglycosylases: A Survey of Assay Methods. Journal of Plant Cell Development. 1: 15 (2018)

    Article  Google Scholar 

  • Fontanille P, Gros J-B, Larroche C. Biotransformations with Crude Enzymes and Whole Cells. pp. 123-155. In: Enzyme Technology. Pandey A, Webb C, Soccol CR Larroche C Eds. Springer. New York, USA (2006)

    Chapter  Google Scholar 

  • Garcia ES, Ruiz CAS, Tilaye T, Eppink MH, Wijffels RH, van den Berg C. Fractionation of proteins and carbohydrates from crude microalgae extracts using an ionic liquid based-aqueous two phase system. Separation and Purification Technology. 204: 56-65 (2018)

    Article  Google Scholar 

  • Garzón-Posse F, Becerra-Figueroa L, Hernández-Arias J, Gamba-Sánchez D. Whole cells as biocatalysts in organic transformations. Molecules. 23: 1265 (2018)

    Article  PubMed  PubMed Central  Google Scholar 

  • Gloster TM. Advances in understanding glycosyltransferases from a structural perspective. Current opinion in structural biology. 28: 131-141 (2014)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Grant C, da Silva Damas Pinto AC, Lui HP, Woodley JM, Baganz F. Tools for characterizing the whole‐cell bio‐oxidation of alkanes at microscale. Biotechnology and Bioengineering. 109: 2179-2189 (2012)

    Article  CAS  PubMed  Google Scholar 

  • Gray CJ, Weissenborn MJ, Eyers CE, Flitsch SL. Enzymatic reactions on immobilised substrates. Chemical Society Reviews. 42: 6378-6405 (2013)

    Article  CAS  PubMed  Google Scholar 

  • Green MR, Sambrook J. Molecular cloning. A Laboratory Manual 4th. (2012)

    Google Scholar 

  • Guerin F, Barbe S, Pizzut-Serin S, Potocki-Veronese G, Guieysse D, Guillet V, Monsan P, Mourey L, Remaud-Siméon M, André I. Structural investigation of the thermostability and product specificity of amylosucrase from the bacterium Deinococcus geothermalis. Journal of Biological Chemistry. 287: 6642-6654 (2012)

    Article  CAS  PubMed  Google Scholar 

  • Guo D, Xu Y, Kang Y, Han S, Zheng S. Synthesis of octyl-β-D-glucopyranoside catalyzed by Thai rosewood β-glucosidase-displaying Pichia pastoris in an aqueous/organic two-phase system. Enzyme and Microbial Technology. 85: 90-97 (2016)

    Article  CAS  PubMed  Google Scholar 

  • Hama S, Yamaji H, Kaieda M, Oda M, Kondo A, Fukuda H. Effect of fatty acid membrane composition on whole-cell biocatalysts for biodiesel-fuel production. Biochemical Engineering Journal. 21: 155-160 (2004)

    Article  CAS  Google Scholar 

  • Harrop A, Hocknull M, Lilly M. Biotransformations in organic solvents: a difference between Gram-positive and Gram-negative bacteria. Biotechnology letters. 11: 807-810 (1989)

    Article  CAS  Google Scholar 

  • Heyland J, Antweiler N, Lutz J, Heck T, Geueke B, Kohler HPE, Blank LM, Schmid A. Simple enzymatic procedure for l‐carnosine synthesis: whole‐cell biocatalysis and efficient biocatalyst recycling. Microbial Biotechnology. 3: 74-83 (2010)

    Article  CAS  PubMed  Google Scholar 

  • Hilker I, Alphand V, Wohlgemuth R, Furstoss R. Preparative scale asymmetric Baeyer–Villiger oxidation using a highly productive ‘two-in-one’resin-based in situ SFPR concept. Adv. Synth. Catal. 346: 203-214 (2004)

    Article  CAS  Google Scholar 

  • Hong S, Siziya IN, Seo M-J, Park C-S, Seo D-H. Molecular docking and kinetic studies of the A226N mutant of Deinococcus geothermalis amylosucrase with enhanced transglucosylation activity. Journal of Microbiology and Biotechnology. 30 (2020)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jakoblinnert A, Mladenov R, Paul A, Sibilla F, Schwaneberg U, Ansorge-Schumacher MB, de María PD. Asymmetric reduction of ketones with recombinant E. coli whole cells in neat substrates. Chemical Communications. 47: 12230-12232 (2011)

    Article  CAS  PubMed  Google Scholar 

  • Kamerling JP. Comprehensive glycoscience. Elsevier, Oxford (2007)

    Google Scholar 

  • Kim K-Y, Kim M-D, Han N-S, Seo J-H. Display of Bacillus macerans cyclodextrin glucanotransferase on cell surface of Saccharomyces cerevisiae. Journal of Microbiology and Biotechnology. 12: 411-416 (2002)

    CAS  Google Scholar 

  • Kim Y-J, Siziya IN, Hong S, Lee G-Y, Seo M-J, Kim Y-R, Yoo S-H, Park C-S, Seo D-H. Biosynthesis of glyceride glycoside (nonionic surfactant) by amylosucrase, a powerful glycosyltransferase. Food Science and Biotechnology. 30: 267-276 (2021)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kim M, Day DF. Optimization of oligosaccharide synthesis from cellobiose by dextransucrase. pp. 707–716. In: Biotechnology for fuels and chemicals. Springer: New Jersey (2007)

  • Kjelleberg S, Albertson N, Flärdh K, Holmquist L, Jouper-Jaan Å, Marouga R, Östling J, Svenblad B, Weichart D. How do non-differentiating bacteria adapt to starvation? Antonie Van Leeuwenhoek. 63: 333-341 (1993)

    Article  CAS  PubMed  Google Scholar 

  • Kurosu J, Sato T, Yoshida K, Tsugane T, Shimura S, Kirimura K, Kino K, Usami S. Enzymatic synthesis of α-arbutin by α-anomer-selective glucosylation of hydroquinone using lyophilized cells of Xanthomonas campestris WU-9701. Journal of bioscience and bioengineering. 93: 328-330 (2002)

    Article  CAS  PubMed  Google Scholar 

  • Ladkau N, Schmid A, Bühler B. The microbial cell—functional unit for energy dependent multistep biocatalysis. Current Opinion in Biotechnology. 30: 178-189 (2014)

    Article  CAS  PubMed  Google Scholar 

  • Lairson L, Henrissat B, Davies G, Withers S. Glycosyltransferases: structures, functions, and mechanisms. Annu. Rev. Biochem. 77: 521-555 (2008)

    Article  CAS  PubMed  Google Scholar 

  • Lam KS. Application of whole‐cell biotransformation in the pharmaceutical industry. In: Biocatalysis for the pharmaceutical industry. Singapore (2009)

  • Lăzăroaie MM. Multiple responses of gram-positive and gram-negative bacteria to mixture of hydrocarbons. Brazilian Journal of Microbiology. 41: 649-667 (2010)

    Article  Google Scholar 

  • Leis D, Lauß B, Macher-Ambrosch R, Pfennig A, Nidetzky B, Kratzer R. Integration of whole-cell reaction and product isolation: Highly hydrophobic solvents promote in situ substrate supply and simplify extractive product isolation. Journal of biotechnology. 257: 110-117 (2017)

    Article  CAS  PubMed  Google Scholar 

  • Lim M-C, Seo D-H, Jung J-H, Park C-S, Kim Y-R. Enzymatic synthesis of amylose nanocomposite microbeads using amylosucrase from Deinococcus geothermalis. RSC Advances. 4: 26421-26424 (2014)

    Article  CAS  Google Scholar 

  • Lin B, Tao Y. Whole-cell biocatalysts by design. Microbial Cell Factories. 16: 1-12 (2017)

    Article  CAS  Google Scholar 

  • Linares-Pasten JA, Andersson M, N Karlsson E. Thermostable glycoside hydrolases in biorefinery technologies. Current Biotechnology. 3: 26-44 (2014)

    Article  CAS  Google Scholar 

  • Liu C-Q, Deng L, Zhang P, Zhang S-R, Xu T, Wang F, Tan T-W. Efficient production of α-arbutin by whole-cell biocatalysis using immobilized hydroquinone as a glucosyl acceptor. Journal of Molecular Catalysis B: Enzymatic. 91: 1-7 (2013)

    Article  Google Scholar 

  • Loftsson T, Duchêne D. Cyclodextrins and their pharmaceutical applications. International journal of pharmaceutics. 329: 1-11 (2007)

    Article  CAS  PubMed  Google Scholar 

  • Malanovic N, Lohner K. Gram-positive bacterial cell envelopes: The impact on the activity of antimicrobial peptides. Biochimica et Biophysica Acta (BBA)-Biomembranes. 1858: 936-946 (2016)

    Article  CAS  PubMed  Google Scholar 

  • Mestrom L, Przypis M, Kowalczykiewicz D, Pollender A, Kumpf A, Marsden SR, Bento I, Jarzębski AB, Szymańska K, Chruściel A. Leloir glycosyltransferases in applied biocatalysis: A multidisciplinary approach. International Journal of Molecular Sciences. 20: 5263 (2019)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Minatel IO, Borges CV, Ferreira MI, Gomez HAG, Chen C-YO, Lima GPP. Phenolic compounds: Functional properties, impact of processing and bioavailability. Phenolic Compd. Biol. Act. 8: 1-24 (2017)

    Google Scholar 

  • Nam S-W, Park H-Y, Kim J-H, Seo J-H, Han N-S, Kim B-W. Expression of Bacillus macerans cyclodextrin glucanotransferase gene in Saccharomyces cerevisiae. Biotechnology Letters. 23: 727-730 (2001)

    Article  CAS  Google Scholar 

  • Ni Y, Holtmann D, Hollmann F. How green is biocatalysis? To calculate is to know. ChemCatChem. 6: 930-943 (2014)

    Article  CAS  Google Scholar 

  • Nidetzky B, Gutmann A, Zhong C. Leloir glycosyltransferases as biocatalysts for chemical production. ACS Catalysis. 8: 6283-6300 (2018)

    Article  CAS  Google Scholar 

  • Nobre C, Suvarov P, De Weireld G. Evaluation of commercial resins for fructo-oligosaccharide separation. New Biotechnology. 31: 55-63 (2014)

    Article  CAS  PubMed  Google Scholar 

  • Noor E, Haraldsdóttir HS, Milo R, Fleming RM. Consistent estimation of Gibbs energy using component contributions. PLoS Computational Biology. 9: e1003098 (2013)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ojha S, Mishra S, Kapoor S, Chand S. Synthesis of hexyl α-glucoside and α-polyglucosides by a novel microbacterium isolate. Applied Microbiology and Biotechnology. 97: 5293-5301 (2013)

    Article  CAS  PubMed  Google Scholar 

  • Overwin H, Wray V, Seeger M, Sepúlveda-Boza S, Hofer B. Flavanone and isoflavone glucosylation by non-Leloir glycosyltransferases. Journal of Biotechnology. 233: 121-128 (2016)

    Article  CAS  PubMed  Google Scholar 

  • Park S, Kazlauskas RJ. Biocatalysis in ionic liquids–advantages beyond green technology. Current Opinion in Biotechnology. 14: 432-437 (2003)

    Article  CAS  PubMed  Google Scholar 

  • Park D-C, Kim T-K, Lee Y-H. Characteristics of transglycosylation reaction of cyclodextrin glucanotransferase in the heterogeneous enzyme reaction system using extrusion starch as a glucosyl donor. Enzyme and Microbial Technology. 22: 217-222 (1998)

    Article  Google Scholar 

  • Park S, Moon K, Park C-S, Jung D-H, Cha J. Synthesis of aesculetin and aesculin glycosides using engineered Escherichia coli expressing Neisseria polysaccharea amylosucrase. Journal of Microbiology and Biotechnology. 28: 566-570 (2018)

    Article  CAS  PubMed  Google Scholar 

  • Peterson ME, Daniel RM, Danson MJ, Eisenthal R. The dependence of enzyme activity on temperature: determination and validation of parameters. Biochemical Journal. 402: 331-337 (2007)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pfruender H, Jones R, Weuster-Botz D. Water immiscible ionic liquids as solvents for whole cell biocatalysis. Journal of Biotechnology. 124: 182-190 (2006)

    Article  CAS  PubMed  Google Scholar 

  • Quirasco M, Remaud-Simeon M, Monsan P, López-Munguía A. Experimental behavior of a whole cell immobilized dextransucrase biocatalyst in batch and packed bed reactors. Bioprocess Engineering. 20: 289-295 (1999)

    Article  CAS  Google Scholar 

  • Rather MY, Mishra S, Chand S. β-Glucosidase catalyzed synthesis of octyl-β-D-glucopyranoside using whole cells of Pichia etchellsii in micro aqueous media. Journal of Biotechnology. 150: 490-496 (2010)

    Article  CAS  PubMed  Google Scholar 

  • Rather MY, Mishra S, Verma V, Chand S. Biotransformation of methyl-β-D-glucopyranoside to higher chain alkyl glucosides by cell bound β-glucosidase of Pichia etchellsii. Bioresource Technology. 107: 287-294 (2012)

    Article  CAS  PubMed  Google Scholar 

  • Rolland-Sabaté A, Colonna P, Potocki-Veronese G, Monsan P, Planchot V. Elongation and insolubilisation of α-glucans by the action of Neisseria polysaccharea amylosucrase. Journal of Cereal Science. 40: 17-30 (2004)

    Article  Google Scholar 

  • Russell N, Evans R, Ter Steeg P, Hellemons J, Verheul A, Abee T. Membranes as a target for stress adaptation. International Journal of Food Microbiology. 28: 255-261 (1995)

    Article  CAS  PubMed  Google Scholar 

  • Ryu JH, Lee BH, Seo DH, Baik MY, Park CS, Wang R, Yoo SH. Production and characterization of digestion‐resistant starch by the reaction of Neisseria polysaccharea amylosucrase. Starch‐Stärke. 62: 221-228 (2010)

    Article  CAS  Google Scholar 

  • Schmideder A, Priebe X, Rubenbauer M, Hoffmann T, Huang F-C, Schwab W, Weuster-Botz D. Non-water miscible ionic liquid improves biocatalytic production of geranyl glucoside with Escherichia coli overexpressing a glucosyltransferase. Bioprocess and Biosystems Engineering. 39: 1409-1414 (2016)

    Article  CAS  PubMed  Google Scholar 

  • Schrewe M, Julsing MK, Buehler B, Schmid A. Whole-cell biocatalysis for selective and productive C–O functional group introduction and modification. Chemical Society Reviews. 42: 6346-6377 (2013)

    Article  CAS  PubMed  Google Scholar 

  • Schüürmann J, Quehl P, Festel G, Jose J. Bacterial whole-cell biocatalysts by surface display of enzymes: toward industrial application. Applied Microbiology and Biotechnology. 98: 8031-8046 (2014)

    Article  PubMed  Google Scholar 

  • Schwaiger KN, Voit A, Dobiašová H, Luley C, Wiltschi B, Nidetzky B. Plasmid Design for Tunable Two-Enzyme Co-Expression Promotes Whole-Cell Production of Cellobiose. Biotechnology Journal. 15: 2000063 (2020)

    Article  CAS  Google Scholar 

  • Schwaiger KN, Cserjan-Puschmann M, Striedner G, Nidetzky B. Whole cell-based catalyst for enzymatic production of the osmolyte 2-O-α-glucosylglycerol. Microb Cell Fact. 20: 79 (2021)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Seo D-H, Jung J-H, Ha S-J, Cho H-K, Jung D-H, Kim T-J, Baek N-I, Yoo S-H, Park C-S. High-yield enzymatic bioconversion of hydroquinone to α-arbutin, a powerful skin lightening agent, by amylosucrase. Applied Microbiology and Biotechnology. 94: 1189-1197 (2012)

    Article  CAS  PubMed  Google Scholar 

  • Seo D-H, Jung J-H, Park C-S. Improved polymerization activity of Deinococcus geothermalis amylosucrase by semi-rational design: Effect of loop flexibility on the polymerization reaction. International Journal of Biological Macromolecules. 130: 177-185 (2019)

    Article  CAS  PubMed  Google Scholar 

  • Seo D-H, Yoo S-H, Choi S-J, Kim Y-R, Park C-S. Versatile biotechnological applications of amylosucrase, a novel glucosyltransferase. Food Science and Biotechnology. 29: 1-16 (2020)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Shim H-Y, Hong W-P, Ahn Y-H. Enzymatic preparation of phenolic glucosides by Streptococcus mutans. Bulletin of the Korean Chemical Society. 24: 1680-1682 (2003)

    Article  CAS  Google Scholar 

  • Shin H, Park K, Kang K, Oh D, Lee S, Baig S, Lee J. Novel method for cell immobilization and its application for production of oligosaccharides from sucrose. Letters in applied microbiology. 38: 176-179 (2004)

    Article  CAS  PubMed  Google Scholar 

  • Siegele DA, Kolter R. Life after log. Journal of Bacteriology. 174: 345 (1992)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Siziya IN, Kim Y-S, Seo D-H. Whole cell biosynthesis of luteolin glycosides by engineered Corynebacterium glutamicum harboring the amylosucrase gene. Food and Bioproducts Processing. 127: 349-359 (2021)

    Article  CAS  Google Scholar 

  • Sugimoto K, Nishimura T, Nomura K, Sugimoto K, Kuriki T. Inhibitory effects of α-arbutin on melanin synthesis in cultured human melanoma cells and a three-dimensional human skin model. Biological and Pharmaceutical Bulletin. 27: 510-514 (2004)

    Article  CAS  PubMed  Google Scholar 

  • Tramice A, Andreotti G, Giordano A, Trincone A. Enzymatic transglycosylation. Encyclopedia of Industrial Biotechnology: Bioprocess, Bioseparation, and Cell Technology. 1–15 (2009)

  • Tufvesson P, Lima-Ramos J, Haque NA, Gernaey KV, Woodley JM. Advances in the process development of biocatalytic processes. Organic Process Research & Development. 17: 1233-1238 (2013)

    Article  CAS  Google Scholar 

  • Uehara A, Takahashi N, Moriyama M, Hirano T, Hakamata W, Nishio T. Synthesis of chitin oligosaccharides using dried Stenotrophomonas maltophilia cells containing a transglycosylation reaction-catalyzing β-N-acetylhexosaminidase as a whole-cell catalyst. Applied Biochemistry and Biotechnology. 184: 673-684 (2018)

    Article  CAS  PubMed  Google Scholar 

  • Urresti S, Albesa-Jové D, Schaeffer F, Pham HT, Kaur D, Gest P, van der Woerd MJ, Carreras-González A, López-Fernández S, Alzari PM. Mechanistic insights into the retaining glucosyl-3-phosphoglycerate synthase from mycobacteria. Journal of Biological Chemistry. 287: 24649-24661 (2012)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Vocadlo DJ, Withers SG. Glycosidase-Catalysed Oligosaccharide Synthesis. pp. 724-844. In: Carbohydrates in Chemistry and Biology. Wiley-VCH. Weinheim, Germany (2000)

    Chapter  Google Scholar 

  • von Rybinski W, Hill K. Alkyl polyglycosides—properties and applications of a new class of surfactants. Angewandte Chemie International Edition. 37: 1328-1345 (1998)

    Article  Google Scholar 

  • Wachtmeister J, Rother D. Recent advances in whole cell biocatalysis techniques bridging from investigative to industrial scale. Current Opinion in Biotechnology. 42: 169-177 (2016)

    Article  CAS  PubMed  Google Scholar 

  • Wang A, Zhang F, Huang L, Yin X, Li H, Wang Q, Zeng Z, Xie T. New progress in biocatalysis and biotransformation of flavonoids. Journal of Medicinal Plants Research. 4: 847-856 (2010)

    CAS  Google Scholar 

  • Wang L, Zheng P, Hu M, Tao Y. Inorganic phosphate self-sufficient whole-cell biocatalysts containing two co-expressed phosphorylases facilitate cellobiose production. Journal of Industrial Microbiology and Biotechnology. 49 (2022)

    Article  PubMed  PubMed Central  Google Scholar 

  • Weber FJ, de Bont JA. Adaptation mechanisms of microorganisms to the toxic effects of organic solvents on membranes. Biochimica et Biophysica Acta (BBA)-Reviews on Biomembranes. 1286: 225-245 (1996)

    Article  CAS  PubMed  Google Scholar 

  • Wu PH, Giridhar R, Wu WT. Surface display of transglucosidase on Escherichia coli by using the ice nucleation protein of Xanthomonas campestris and its application in glucosylation of hydroquinone. Biotechnology and Bioengineering. 95: 1138-1147 (2006)

    Article  CAS  PubMed  Google Scholar 

  • Wu P-H, Nair GR, Chu I-M, Wu W-T. High cell density cultivation of Escherichia coli with surface anchored transglucosidase for use as whole-cell biocatalyst for α-arbutin synthesis. Journal of Industrial Microbiology and Biotechnology. 35: 95 (2008)

    Article  CAS  PubMed  Google Scholar 

  • Xu L, Qi T, Xu L, Lu L, Xiao M. Recent progress in the enzymatic glycosylation of phenolic compounds. Journal of Carbohydrate Chemistry. 35: 1-23 (2016)

    Article  Google Scholar 

  • Yamamoto H, Carreira EM. Comprehensive Chirality: Online. Elsevier Science, New York (2012)

    Google Scholar 

  • Yang C, Fan W, Zhang R, Shi J, Knežević-Jugović Z, Zhang B. Study on transglucosylation properties of amylosucrase from Xanthomonas campestris pv. Campestris and its application in the production of α-arbutin. Catalysts. 9: 5 (2019)

  • Zajkoska P, Rebroš M, Rosenberg M. Biocatalysis with immobilized Escherichia coli. Applied Microbiology and Biotechnology. 97: 1441-1455 (2013)

    Article  CAS  PubMed  Google Scholar 

  • Zelder O, Hauer B. Environmentally directed mutations and their impact on industrial biotransformation and fermentation processes. Current Opinion in Microbiology. 3: 248-251 (2000)

    Article  CAS  PubMed  Google Scholar 

  • Zhou Y, Gan T, Jiang R, Chen H, Ma Z, Lu Y, Zhu L, Chen X. Whole-cell catalytic synthesis of 2-O-α-glucopyranosyl-l-ascorbic acid by sucrose phosphorylase from Bifidobacterium breve via a batch-feeding strategy. Process Biochemistry. 112: 27-34 (2022)

    Article  CAS  Google Scholar 

  • Zhu L, Jiang D, Zhou Y, Lu Y, Fan Y, Chen X. Batch-feeding whole-cell catalytic synthesis of α-arbutin by amylosucrase from Xanthomonas campestris. Journal of Industrial Microbiology and Biotechnology. 46: 759-767 (2019a)

    Article  CAS  PubMed  Google Scholar 

  • Zhu L, Xu M, Lu C, Chen L, Xu A, Fang J, Chen H, Lu Y, Fan Y, Chen X. Optimization of whole-cell biotransformation for scale-up production of α-arbutin from hydroquinone by the use of recombinant Escherichia coli. AMB Express. 9: 94 (2019b)

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Funding

This work was supported by the National Research Foundation of Korea (NRF). Additionally, it was funded by the Korean government (MSIT, Ministry of Science and ICT) (Grant Nos. 2021R1C1C1004489 and 2021R1A4A1023437).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dong-Ho Seo.

Ethics declarations

Competing interest

Authors declare no conflicts of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Siziya, I.N., Jung, JH., Seo, MJ. et al. Whole-cell bioconversion using non-Leloir transglycosylation reactions: a review. Food Sci Biotechnol 32, 749–768 (2023). https://doi.org/10.1007/s10068-023-01283-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10068-023-01283-4

Keywords

Navigation