Skip to main content
Log in

Modulation of gut microbiota by rice starch enzymatically modified using amylosucrase from Deinococcus geothermalis

  • Research Article
  • Published:
Food Science and Biotechnology Aims and scope Submit manuscript

Abstract

Amylosucrase can increase the amount of resistant starch (RS) in starch by transferring glucose from sucrose to amylopectin. Here, rice starch was modified using amylosucrase from Deinococcus geothermalis (DgAS). DgAS-modified rice starch (DMRS) increased the side-chain length of amylopectin and appeared in the form of B-type crystals. In vitro digestion analyses revealed that DMRS had a higher RS contents and lower digestion rate than native rice starch. When high-fat diet (HFD)-induced C57BL/6 mice were orally administered DMRS, body weight and white fat tissues of DMRS-fed HFD mice were not significantly different. However, serum leptin and glucose levels were significantly decreased and serum glucagon like peptide-1was increased in these mice. The cecal microbiome in DMRS-fed HFD mice was identified to investigate the role of DMRS in gut microbiota regulation. DMRS supplementation increased the relative abundance of Bacteroides, Faecalibaculum, and Ruminococcus in mouse gut microbiota.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Bang S-J, Lee E-S, Song E-J, Nam Y-D, Seo M-J, Kim H-J, Park C-S, Lim MY, Seo D-H. Effect of raw potato starch on the gut microbiome and metabolome in mice. International Journal of Biological Macromolecules. 133: 37-43 (2019)

    Article  CAS  PubMed  Google Scholar 

  • Barouei J, Bendiks Z, Martinic A, Mishchuk D, Heeney D, Hsieh Y-H, Kieffer D, Zaragoza J, Martin R, Slupsky C, Marco ML. Microbiota, metabolome, and immune alterations in obese mice fed a high-fat diet containing type 2 resistant starch. Molecular Nutrition & Food Research. 61: 1700184 (2017)

    Article  Google Scholar 

  • Bendiks ZA, Guice J, Coulon D, Raggio AM, Page RC, Carvajal-Aldaz DG, Luo M, Welsh DA, Marx BD, Taylor CM, Husseneder C, Keenan MJ, Marco ML. Resistant starch type 2 and whole grain maize flours enrich different intestinal bacteria and metatranscriptomes. Journal of Functional Foods. 90: 104982 (2022)

    Article  CAS  Google Scholar 

  • Bolyen E, et al. Reproducible, interactive, scalable and extensible microbiome data science using QIIME 2. Nature Biotechnology. 37: 852-857 (2019)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Brown K, Abbott DW, Uwiera RR, Inglis GD. Removal of the cecum affects intestinal fermentation, enteric bacterial community structure, and acute colitis in mice. Gut Microbes. 9: 218-235 (2018)

    Article  PubMed  PubMed Central  Google Scholar 

  • Callahan BJ, McMurdie PJ, Rosen MJ, Han AW, Johnson AJA, Holmes SP. DADA2: high-resolution sample inference from Illumina amplicon data. Nature Methods. 13: 581-583 (2016)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Champ MM-J. Physiological aspects of resistant starch and in vivo measurements. Journal of AOAC International. 87: 749-755 (2019)

    Article  Google Scholar 

  • Choi J-M, Park C-S, Baik M-Y, Kim H-S, Choi Y-S, Choi H-W, Seo D-H. Enzymatic extraction of starch from broken rice using freeze-thaw infusion with food-grade protease. Starch - Stärke. 70: 1700007 (2018)

    Article  Google Scholar 

  • Daniel H, Gholami AM, Berry D, Desmarchelier C, Hahne H, Loh G, Mondot S, Lepage P, Rothballer M, Walker A, Böhm C, Wenning M, Wagner M, Blaut M, Schmitt-Kopplin P, Kuster B, Haller D, Clavel T. High-fat diet alters gut microbiota physiology in mice. The ISME Journal. 8: 295-308 (2014)

    Article  CAS  PubMed  Google Scholar 

  • Edgar RC, Haas BJ, Clemente JC, Quince C, Knight R. UCHIME improves sensitivity and speed of chimera detection. Bioinformatics. 27: 2194-200 (2011)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Englyst HN, Kingman SM, Cummings JH. Classification and measurement of nutritionally important starch fractions. European Journal of Clinical Nutrition 46 Suppl. 2: S33-50 (1992)

    PubMed  Google Scholar 

  • Hehemann J-H, Correc G, Barbeyron T, Helbert W, Czjzek M, Michel G. Transfer of carbohydrate-active enzymes from marine bacteria to Japanese gut microbiota. Nature. 464: 908-912 (2010)

    Article  CAS  PubMed  Google Scholar 

  • Jung D-H, Park C-S, Kim H-S, Nam TG, Lee B-H, Baik M-Y, Yoo S-H, Seo D-H. Enzymatic modification of potato starch by amylosucrase according to reaction temperature: effect of branch-chain length on structural, physicochemical, and digestive properties. Food Hydrocolloids. 122: 107086 (2022)

    Article  CAS  Google Scholar 

  • Jung H-T, Park C-S, Shim Y-E, Shin H, Baik M-Y, Kim H-S, Yoo S-H, Seo D-H, Lee B-H. Enzymatically elongated rice starches by amylosucrase from Deinococcus geothermalis lead to slow down the glucose generation rate at the mammalian α-glucosidase level. International Journal of Biological Macromolecules. 149: 767-772 (2020)

    Article  CAS  PubMed  Google Scholar 

  • Jung J-H, Seo D-H, Ha S-J, Song M-C, Cha J, Yoo S-H, Kim T-J, Baek N-I, Baik M-Y, Park C-S. Enzymatic synthesis of salicin glycosides through transglycosylation catalyzed by amylosucrases from Deinococcus geothermalis and Neisseria polysaccharea. Carbohydrate Research. 344: 1612-1619 (2009)

    Article  CAS  PubMed  Google Scholar 

  • Karaki S-i, Mitsui R, Hayashi H, Kato I, Sugiya H, Iwanaga T, Furness JB, Kuwahara A. Short-chain fatty acid receptor, GPR43, is expressed by enteroendocrine cells and mucosal mast cells in rat intestine. Cell and Tissue Research. 324: 353-360 (2006)

    Article  CAS  PubMed  Google Scholar 

  • Keenan MJ, Zhou J, Hegsted M, Pelkman C, Durham HA, Coulon DB, Martin RJ. Role of resistant starch in improving gut health, adiposity, and insulin resistance. Advances in Nutrition. 6: 198-205 (2015)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kim B-S, Kim H-S, Hong J-S, Huber KC, Shim J-H, Yoo S-H. Effects of amylosucrase treatment on molecular structure and digestion resistance of pre-gelatinised rice and barley starches. Food Chemistry. 138: 966-975 (2013)

    Article  CAS  PubMed  Google Scholar 

  • Kim BK, Kim HI, Moon TW, Choi SJ. Branch chain elongation by amylosucrase: production of waxy corn starch with a slow digestion property. Food Chemistry. 152: 113-120 (2014)

    Article  CAS  PubMed  Google Scholar 

  • Kim B-S, Kim H-S, Yoo S-H. Characterization of enzymatically modified rice and barley starches with amylosucrase at scale-up production. Carbohydrate Polymers. 125: 61-68 (2015)

    Article  CAS  PubMed  Google Scholar 

  • Kim JH, Kim HR, Choi SJ, Park C-S, Moon TW. Production of an in vitro low-digestible starch via hydrothermal treatment of amylosucrase-modified normal and waxy rice starches and its structural properties. Journal of Agricultural and Food Chemistry. 64: 5045-5052 (2016)

    Article  CAS  PubMed  Google Scholar 

  • Klingbeil EA, Cawthon C, Kirkland R, de La Serre CB. Potato-resistant starch supplementation improves microbiota dysbiosis, inflammation, and gut–brain signaling in high fat-fed rats. Nutrients. 11 (2019)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Le Leu RK, Brown IL, Hu Y, Bird AR, Jackson M, Esterman A, Young GP. A synbiotic combination of resistant starch and Bifidobacterium lactis facilitates apoptotic deletion of carcinogen-damaged cells in rat colon. The Journal of Nutrition. 135: 996-1001 (2005)

    Article  PubMed  Google Scholar 

  • Le Q-T, Lee C-K, Kim Y-W, Lee S-J, Zhang R, Withers SG, Kim Y-R, Auh J-H, Park K-H. Amylolytically-resistant tapioca starch modified by combined treatment of branching enzyme and maltogenic amylase. Carbohydrate Polymers. 75: 9-14 (2009)

    Article  CAS  Google Scholar 

  • Lee B-H, Hamaker BR. Number of branch points in α-limit dextrins impact glucose generation rates by mammalian mucosal α-glucosidases. Carbohydrate Polymers. 157: 207-213 (2017)

    Article  CAS  PubMed  Google Scholar 

  • Lee E-S, Lee B-H, Shin DU, Lim M-Y, Chung W-H, Park C-S, Baik M-Y, Nam Y-D, Seo D-H. Amelioration of obesity in high-fat diet-fed mice by chestnut starch modified by amylosucrase from Deinococcus geothermalis. Food Hydrocolloids. 75: 22-32 (2018)

    Article  CAS  Google Scholar 

  • Lee E-S, Song E-J, Nam Y-D, Nam TG, Kim H-J, Lee B-H, Seo M-J, Seo D-H. Effects of enzymatically modified chestnut starch on the gut microbiome, microbial metabolome, and transcriptome of diet-induced obese mice. International Journal of Biological Macromolecules. 145: 235-243 (2020)

    Article  CAS  PubMed  Google Scholar 

  • Lehmann U, Robin F. Slowly digestible starch–its structure and health implications: a review. Trends in Food Science & Technology. 18: 346-355 (2007)

    Article  CAS  Google Scholar 

  • Li H-Y, Zhou D-D, Gan R-Y, Huang S-Y, Zhao C-N, Shang A, Xu X-Y, Li H-B. Effects and mechanisms of probiotics, prebiotics, synbiotics, and postbiotics on metabolic diseases targeting gut microbiota: a narrative review. Nutrients. 13: 3211 (2021)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lin X, Luo Z, Pang S, Wang CC, Ge L, Dai Y, Zhou J, Chen F, Hong X, Zhang J. The effects of yam gruel on lowering fasted blood glucose in T2DM rats. Open Life Sciences. 15: 763-773 (2020)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Magallanes‐Cruz PA, Flores‐Silva PC, Bello‐Perez LA. Starch structure influences its digestibility: a review. Journal of Food Science. 82: 2016-2023 (2017)

    Article  CAS  PubMed  Google Scholar 

  • Martin M. Cutadapt removes adapter sequences from high-throughput sequencing reads. EMBnet. Journal. 17: 10-12 (2011)

    Article  Google Scholar 

  • Martínez I, Kim J, Duffy PR, Schlegel VL, Walter J. Resistant starches types 2 and 4 have differential effects on the composition of the fecal microbiota in human subjects. PLoS One. 5: e15046 (2010)

    Article  PubMed  PubMed Central  Google Scholar 

  • Maziarz MP, Preisendanz S, Juma S, Imrhan V, Prasad C, Vijayagopal P. Resistant starch lowers postprandial glucose and leptin in overweight adults consuming a moderate-to-high-fat diet: a randomized-controlled trial. Nutrition Journal. 16: 14 (2017)

    Article  PubMed  PubMed Central  Google Scholar 

  • Moen B, Henjum K, Måge I, Knutsen SH, Rud I, Hetland RB, Paulsen JE. Effect of dietary fibers on cecal microbiota and intestinal tumorigenesis in azoxymethane treated A/J Min/+ mice. PLoS One. 11: e0155402 (2016)

    Article  PubMed  PubMed Central  Google Scholar 

  • Monk JM, Lepp D, Zhang CP, Wu W, Zarepoor L, Lu JT, Pauls KP, Tsao R, Wood GA, Robinson LE, Power KA. Diets enriched with cranberry beans alter the microbiota and mitigate colitis severity and associated inflammation. The Journal of Nutritional Biochemistry. 28: 129-39 (2016)

    Article  CAS  PubMed  Google Scholar 

  • Moon Y-H, Kim G, Lee J-H, Jin X-J, Kim D-W, Kim D. Enzymatic synthesis and characterization of novel epigallocatechin gallate glucosides. Journal of Molecular Catalysis B: Enzymatic. 40: 1-7 (2006)

    Article  CAS  Google Scholar 

  • Park M-O, Chandrasekaran M, Yoo S-H. Production and characterization of low-calorie turanose and digestion-resistant starch by an amylosucrase from Neisseria subflava. Food Chemistry. 300: 125225 (2019)

    Article  CAS  PubMed  Google Scholar 

  • Phipps PR, Starritt E, Caterson I, Grunstein RR. Association of serum leptin with hypoventilation in human obesity. Thorax. 57: 75 (2002)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Qiu J, Chen L, Zhu Q, Wang D, Wang W, Sun X, Liu X, Du F. Screening natural antioxidants in peanut shell using DPPH-HPLC-DAD-TOF/MS methods. Food Chemistry. 135: 2366-71 (2012)

    Article  CAS  PubMed  Google Scholar 

  • Quast C, Pruesse E, Yilmaz P, Gerken J, Schweer T, Yarza P, Peplies J, Glöckner FO. The SILVA ribosomal RNA gene database project: improved data processing and web-based tools. Nucleic Acids Research. 41: D590-D596 (2012)

    Article  PubMed  PubMed Central  Google Scholar 

  • Remya R, Jyothi A. A comparative study on the resistant starch content in starches from different botanical sources in relation to their physicochemical properties. Journal of Root Crops. 41: 37-47 (2015)

    Google Scholar 

  • Rognes T, Flouri T, Nichols B, Quince C, Mahé F. VSEARCH: a versatile open source tool for metagenomics. PeerJ. 4: e2584 (2016)

    Article  PubMed  PubMed Central  Google Scholar 

  • Ryu J-H, Lee B-H, Seo D-H, Baik M-Y, Park C-S, Wang R, Yoo S-H. Production and characterization of digestion-resistant starch by the reaction of Neisseria polysaccharea amylosucrase. Starch - Stärke. 62: 221-228 (2010)

    Article  CAS  Google Scholar 

  • Sajilata MG, Singhal RS, Kulkarni PR. Resistant starch–a review. Comprehensive reviews in Food Science and Food Safety. 5: 1-17 (2006)

    Article  CAS  PubMed  Google Scholar 

  • Seo D-H, Jung J-H, Ha S-J, Yoo S-H, Kim T-J, Cha J, Park C-S. Molecular Cloning of the amylosucrase gene from a moderate thermophilic bacterium Deinococcus geothermalis and analysis of its dual enzyme activity. pp. 125-140. In: Carbohydrate-Active Enzymes. Park K-H (ed). Woodhead Publishing (2008)

    Chapter  Google Scholar 

  • Seo DH, Jung JH, Jung DH, Park S, Yoo SH, Kim YR, Park CS. An unusual chimeric amylosucrase generated by domain-swapping mutagenesis. Enzyme and Microbial Technology. 86: 7-16 (2016)

    Article  CAS  PubMed  Google Scholar 

  • Shin HJ, Choi SJ, Park CS, Moon TW. Preparation of starches with low glycaemic response using amylosucrase and their physicochemical properties. Carbohydrate Polymers. 82: 489-497 (2010)

    Article  CAS  Google Scholar 

  • Smith AD, Chen C, Cheung L, Ward R, Hintze KJ, Dawson HD. Resistant potato starch alters the cecal microbiome and gene expression in mice fed a Western diet based on NHANES data. Frontiers in Nutrition. 9 (2022)

    Article  PubMed  PubMed Central  Google Scholar 

  • Vermeylen R, Goderis B, Reynaers H, Delcour JA. Amylopectin molecular structure reflected in macromolecular organization of granular starch. Biomacromolecules. 5: 1775-1786 (2004)

    Article  CAS  PubMed  Google Scholar 

  • Voragen AG. Technological aspects of functional food-related carbohydrates. Trends in Food Science & Technology. 9: 328-335 (1998)

    Article  CAS  Google Scholar 

  • Walker AW, Ince J, Duncan SH, Webster LM, Holtrop G, Ze X, Brown D, Stares MD, Scott P, Bergerat A, Louis P, McIntosh F, Johnstone AM, Lobley GE, Parkhill J, Flint HJ. Dominant and diet-responsive groups of bacteria within the human colonic microbiota. ISME Journal. 5: 220-30 (2011)

    Article  CAS  PubMed  Google Scholar 

  • Wang R, Zhang T, He J, Zhang H, Zhou X, Wang T, Feng W, Chen Z. Tailoring digestibility of starches by chain elongation using amylosucrase from Neisseria polysaccharea via a zipper reaction mode. Journal of Agricultural and Food Chemistry. 68: 225-234 (2020)

    Article  CAS  PubMed  Google Scholar 

  • Ze X, Ben David Y, Laverde-Gomez JA, Dassa B, Sheridan PO, Duncan SH, Louis P, Henrissat B, Juge N, Koropatkin NM. Unique organization of extracellular amylases into amylosomes in the resistant starch-utilizing human colonic Firmicutes bacterium Ruminococcus bromii. MBio. 6: e01058-15 (2015)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhang H, Wang R, Chen Z, Zhong Q. Enzymatically modified starch with low digestibility produced from amylopectin by sequential amylosucrase and pullulanase treatments. Food Hydrocolloids. 95: 195-202 (2019)

    Article  CAS  Google Scholar 

  • Zhang H, Zhou X, Wang T, He J, Yue M, Luo X, Wang L, Wang R, Chen Z. Enzymatically modified waxy corn starch with amylosucrase: The effect of branch chain elongation on structural and physicochemical properties. Food Hydrocolloids. 63: 518-524 (2017)

    Article  CAS  Google Scholar 

  • Zhang H, Zhou X, Wang T, Luo X, Wang L, Li Y, Wang R, Chen Z. New insights into the action mode of amylosucrase on amylopectin. International Journal of Biological Macromolecules. 88: 380-384 (2016)

    Article  CAS  PubMed  Google Scholar 

  • Zheng Y, Wang Q, Li B, Lin L, Tundis R, Loizzo MR, Zheng B, Xiao J. Characterization and prebiotic effect of the resistant starch from purple sweet potato. Molecules. 21: 932 (2016)

    Article  PubMed  PubMed Central  Google Scholar 

  • Zhou J, Martin RJ, Tulley RT, Raggio AM, McCutcheon KL, Shen L, Danna SC, Tripathy S, Hegsted M, Keenan MJ. Dietary resistant starch upregulates total GLP-1 and PYY in a sustained day-long manner through fermentation in rodents. American Journal of Physiology-Endocrinology and Metabolism. 295: E1160-E1166 (2008)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Research Foundation of Korea (NRF) grants (Grant Nos. 2021R1C1C1004489 and 2021R1A4A1023437) and the Main Research Program (Grant No. E0170600‐06) of the Korea Food Research Institute (KFRI) funded by the Korean government (MSIT, Ministry of Science and ICT)

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Byung-Hoo Lee or Dong-Ho Seo.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Ethical approval

All applicable international, national, and/or institutional guidelines for the care and use of animal experiments were followed. The study of animal experiments was approved by the Korea Food Research Institutional Animal Care and Use Committee (KFRIACUC, 308).

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 3254 kb)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Song, EJ., Lee, ES., So, YS. et al. Modulation of gut microbiota by rice starch enzymatically modified using amylosucrase from Deinococcus geothermalis. Food Sci Biotechnol 32, 565–575 (2023). https://doi.org/10.1007/s10068-022-01238-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10068-022-01238-1

Keywords

Navigation