Skip to main content
Log in

Immuno-enhancement effect of polysaccharide extracted from Stichopus japonicus on cyclophosphamide-induced immunosuppression mice

  • Published:
Food Science and Biotechnology Aims and scope Submit manuscript

Abstract

Polysaccharide (SJP) was extracted from Sea cucumber, Stichopus japonicas, and its immune-enhancing activities were evaluated in vivo immune-suppressed mice systems. Cyclophosphamide(CY)-treated mice were orally administrated with SJP according to different concentrations. The results showed that administration of SJP significantly increased spleen index without variation of the body weight, compared to only CY treatment group. The proliferation of splenic lymphocyte and NK activity was also stimulated by SJP. In addition, the oral administration of SJP up-regulated COX-2 and TLR-4 as well as cytokines such as IL-1β, IL-4, IL-6, IL-10, TNF-α and IFN-γ, which are secreted from splenic lymphocytes in cyclophosphamide-treated mice. Moreover, our results showed that SJP stimulated macrophages via NF-κB and MAPK signaling pathways. These findings provided the potential use of SJP as an alternative means under immune-suppressed conditions, and furthermore can be utilized as a functional material for food and pharmaceutical industries.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Walls J, Sinclair L, Finlay D. Nutrient sensing, signal transduction and immune responses. Semin Immunol. 28: 396–407 (2016)

    Article  CAS  Google Scholar 

  2. Miccadei S, Masella R, Mileo AM, Gessani S. Omega3 polyunsaturated fatty acids as immunomodulators in colorectal cancer: New potential role in adjuvant therapies. Front Immunol. 7: 486 (2016)

    Article  Google Scholar 

  3. Jesenak M, Urbancikova I, Banovcin P. Respiratory tract infections and the role of biologically active polysaccharides in their management and prevention. Nutrients. 9: 779–790 (2017)

    Article  Google Scholar 

  4. Liu X, Lin Q, Yan Y, Peng F, Sung R, Ren J. Hemicellulose from plant biomass in medical and pharmaceutical application: A critical review. Curr Med Chem. (2017). https://doi.org/10.2174/0929867324666170705113657

  5. Patel S, Goyal A. Chitin and chitinase: Role in pathogenicity, allergenicity and health. Int J Biol Macromol. 97: 331–338 (2017)

    Article  CAS  Google Scholar 

  6. Daien CI, Pinget GV, Tan JK, Macia L. Detrimental impact of microbiota-accessible carbohydrate-deprived diet on gut and immune homeostasis: An overview. Front Immunol. 8: 548 (2017)

    Article  Google Scholar 

  7. Bordbar S, Anwar F, Saari N. High-value components and bioactives from sea cucumbers for functional foods—a review. Mar Drugs. 9: 1761–1805 (2011)

    Article  CAS  Google Scholar 

  8. Cao RA, Surayot U, You S. Structural characterization of immunostimulating protein-sulfated fucan complex extracted from the body wall of a sea cucumber, Stichopus japonicus. Int J Biol Macromol. 99: 539–548 (2017)

    Article  CAS  Google Scholar 

  9. Fredalina BD, Ridzwan BH, Abidin AA, Kaswandi MA, Zaiton H, Zali I, Kittakoop P, Jais AM. Fatty acid compositions in local sea cucumber, Stichopus chloronotus, for wound healing. Gen Pharmacol. 33: 337–340 (1999)

    Article  CAS  Google Scholar 

  10. Liu X, Sun Z, Zhang M, Meng X, Xia X, Yuan W, Xue F, Liu C. Antioxidant and antihyperlipidemic activities of polysaccharides from sea cucumber Apostichopus japonicus. Carbohydr Polym. 90: 1664–1670 (2012)

    Article  CAS  Google Scholar 

  11. Ustyuzhanina NE, Bilan MI, Dmitrenok AS, Shashkov AS, Kusaykin MI, Stonik VA, Nifantiev NE, Usov AI. Structure and biological activity of a fucosylated chondroitin sulfate from the sea cucumber Cucumaria japonica. Carbohydr Polym. 26: 449–459 (2016)

    CAS  Google Scholar 

  12. Cao RA, Lee SH, You SG. Structural effects of sulfated-glycoproteins from Stichopus japonicus on the nitric oxide secretion ability of RAW 264.7 cells. Prev Nutr Food Sci. 19: 307–313 (2014)

    Article  Google Scholar 

  13. Sevag MG, Lackman DB, Smolens J. The isolation of the components of streptococcal nucleoproteins in serologically active form. J Biol Chem. 124: 425–436 (1938)

    CAS  Google Scholar 

  14. Ray A, Dittel BN. Isolation of mouse peritoneal cavity cells. J Vis Exp. 35: 1488 (2010)

    Google Scholar 

  15. Kim JK, Cho ML, Karnjanapratum S, Shin IS, You SG. In vitro and in vivo immunomodulatory activity of sulfated polysaccharides from Enteromorpha prolifera. Int J Biol Macromol. 49: 1051–1058 (2011)

    Article  CAS  Google Scholar 

  16. Green LC, Wagner DA, Glogowski J, Skipper PL, Wishnok JS, Tannenbaum SR. Analysis of nitrate, nitrite, and [15N] nitrate in biological fluids. Anal Biochem. 126: 131–138 (1982)

    Article  CAS  Google Scholar 

  17. Wang J, Tong X, Li P, Cao H, Su W. Immuno-enhancement effects of Shenqi Fuzheng Injection on cyclophosphamide-induced immunosuppression in Balb/c mice. J Ethnopharmacol. 139: 788–795 (2012)

    Article  Google Scholar 

  18. Weeks BA, Keisler AS, Myrvik QN, Warinner JE. Differential uptake of neutral red by macrophages from three species of estuarine fish. Dev Comp Immunol. 11: 117–124 (1987)

    Article  CAS  Google Scholar 

  19. Cho CW, Han CJ, Rhee YK, Lee YC, Shin KS, Shin JS, Lee KT, Hong HD. Cheonggukjang polysaccharides enhance immune activities and prevent cyclophosphamide-induced immunosuppression. Int J Biol Macromol. 72: 519–525 (2015)

    Article  CAS  Google Scholar 

  20. Park HR, Lee HS, Cho SY, Kim YS, Shin KS. Anti-metastatic effect of polysaccharide isolated from Colocasia esculenta is exerted through immunostimulation. Int J Mol Med. 31: 361–368 (2013)

    Article  CAS  Google Scholar 

  21. Sarangi I, Ghosh D, Bhutia SK, Mallick SK, Maiti TK. Anti-tumor and immunomodulating effects of Pleurotus ostreatus mycelia-derived proteoglycans. Int Immunopharmacol. 6: 1287–1297 (2006)

    Article  CAS  Google Scholar 

  22. Narayanan BA, Narayanan NK, Simi B, Reddy BS. Modulation of inducible nitric oxide synthase and related proinflammatory genes by the omega-3 fatty acid docosahexaenoic acid in human colon cancer cells. Cancer Res. 63: 972–979 (2003)

    CAS  Google Scholar 

  23. Bhattacharyya S, Ratajczak CK, Vogt SK, Kelley C, Colonna M, Schreiber RD, Muglia LJ. TAK1 targeting by glucocorticoids determines JNK and IkappaB regulation in Toll-like receptor-stimulated macrophages. Blood. 115: 1921–1931 (2010)

    Article  CAS  Google Scholar 

  24. Livak KJ, Schmittgen TD. Analysis of relative gene expression data using real-time quantitative PCR and the 2(-Delta Delta C(T)) Method. Methods. 25: 402–408 (2001)

    Article  CAS  Google Scholar 

  25. Yun KJ, Kim JY, Kim JB, Lee KW, Jeong SY, Park HJ, Jung HJ, Cho YW, Yun K, Lee KT. Inhibition of LPS-induced NO and PGE2 production by asiatic acid via NF-kappa B inactivation in RAW 264.7 macrophages: possible involvement of the IKK and MAPK pathways. Int Immunopharmacol. 8: 431–441 (2008)

    Article  CAS  Google Scholar 

  26. Underhill DM, Ozinsky A, Hajjar AM, Stevens A, Wilson CB, Bassetti M, Aderem A. The Toll-like receptor 2 is recruited to macrophage phagosomes and discriminates between pathogens. Nature. 401: 811–815 (1999)

    Article  CAS  Google Scholar 

  27. Bartl MM, Luckenbach T, Bergner O, Ullrich O, Koch-Brandt C. Multiple receptors mediate apoJ-dependent clearance of cellular debris into nonprofessional phagocytes. Exp Cell Res. 271: 130–141 (2001)

    Article  CAS  Google Scholar 

  28. Navegantes KC, de Souza Gomes R, Pereira PAT, Czaikoski PG, Azevedo CHM, Monteiro MC. Immune modulation of some autoimmune diseases: the critical role of macrophages and neutrophils in the innate and adaptive immunity. J Transl Med. 15: 36 (2017)

    Article  Google Scholar 

  29. Lori A, Perrotta M, Lembo G, Carnevale D. The spleen: A hub connecting nervous and immune systems in cardiovascular and metabolic diseases. Int J Mol Sci. 18: 1216–1227 (2017)

    Article  Google Scholar 

  30. Chen X, Nie W, Fan S, Zhang J, Wang Y, Lu J, Jin L. A polysaccharide from Sargassum fusiforme protects against immunosuppression in cyclophosphamide-treated mice. Carbohydr Polym. 90: 1114–1119 (2012)

    Article  CAS  Google Scholar 

  31. Sinkora M, Butler JE. Progress in the use of swine in developmental immunology of B and T lymphocytes. Dev Comp Immunol. 58: 1–17 (2016)

    Article  CAS  Google Scholar 

  32. O’Sullivan TE, Sun JC, Lanier LL. Natural Killer Cell Memory. Immunity. 43: 634–645 (2015)

    Article  Google Scholar 

  33. Turner MD, Nedjai B, Hurst T, Pennington DJ. Cytokines and chemokines: At the crossroads of cell signalling and inflammatory disease. Biochim Biophys Acta. 1843: 2563–2582 (2014)

    Article  CAS  Google Scholar 

  34. Karavitis J, Hix LM, Shi YH, Schultz RF, Khazaie K, Zhang M. Regulation of COX2 expression in mouse mammary tumor cells controls bone metastasis and PGE2-induction of regulatory T cell migration. PLoS One. 7: e46342 (2012)

    Article  CAS  Google Scholar 

  35. Reynolds JM, Martinez GJ, Chung Y, Dong C. Toll-like receptor 4 signaling in T cells promotes autoimmune inflammation. Proc Natl Acad Sci U S A. 109: 13064–13069 (2012)

    Article  CAS  Google Scholar 

  36. Raphael I, Nalawade S, Eagar TN, Forsthuber TG. T cell subsets and their signature cytokines in autoimmune and inflammatory diseases. Cytokine. 74: 5–17 (2015)

    Article  CAS  Google Scholar 

  37. Tak PP, Firestein GS. NF-kappaB: a key role in inflammatory diseases. J Clin Invest. 107: 7–11 (2001)

    Article  CAS  Google Scholar 

  38. Kim JB, Han AR, Park EY, Kim JY, Cho W, Lee J, Seo EK, Lee KT. Inhibition of LPS-induced iNOS, COX-2 and cytokines expression by poncirin through the NF-kappaB inactivation in RAW 264.7 macrophage cells. Biol Pharm Bull. 30: 2345–2351 (2007)

    Article  CAS  Google Scholar 

  39. Cargnello M, Roux PP. Activation and function of the MAPKs and their substrates, the MAPK-activated protein kinases. Microbiol Mol Biol Rev. 75: 50–83 (2011)

Download references

Acknowledgements

This study was supported by the Marine Bio-Regional Specialization Leading Technology Development Program (D11413914H480000100) funded by the Ministry of Oceans and Fisheries in Korea.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Woo Jung Park.

Ethics declarations

Conflict of interest

The authors declare no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Monmai, C., Park, S.H., You, S. et al. Immuno-enhancement effect of polysaccharide extracted from Stichopus japonicus on cyclophosphamide-induced immunosuppression mice. Food Sci Biotechnol 27, 565–573 (2018). https://doi.org/10.1007/s10068-017-0248-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10068-017-0248-2

Keywords

Navigation