Skip to main content
Log in

Anti-diabetic effects of mulberry (Morus alba L.) branches and oxyresveratrol in streptozotocin-induced diabetic mice

  • Published:
Food Science and Biotechnology Aims and scope Submit manuscript

Abstract

Despite with accumulating evidences on the anti-diabetic effects of mulberry branch (MB), the major active component for the activity has not been known. Oral administration of MB ethanol (EtOH) extracts [0.5 or 1 g/kg body weight (BW)] once a day for 22 days to streptozotocin-induced diabetic ICR mouse significantly reduced fasting blood and plasma glucose level in a dose dependent manner compared to those of the diabetic control. Administration of oxyresveratrol [ORT, 0.6 g/kg BW], a major compound of MB EtOH extracts, to diabetic ICR mouse also significantly reduced fasting plasma glucose level. Further, ORT increased hepatic glucose transporter 2 transcription and glycogen content. Plasma insulin concentration and intestinal disaccharidase activity were not different between diabetic control and ORT groups. This suggests that ORT reduced plasma glucose by stimulating hepatic glucose uptake and glycogen storage. MB EtOH extracts and ORT could be potential adjunct therapies for diabetes management.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Guariguata L, Whiting DR, Hambleton I, Beagley J, Linnenkamp U, Shaw JE. Global estimates of diabetes prevalence for 2013 and projections for 2035. Diabetes Res. Clin. Pract. 103: 137–149 (2014)

    Article  CAS  Google Scholar 

  2. Nakagawa T, Tanabe K, Croker BP, Johnson RJ, Grant MB, Kosugi T, Li Q. Endothelial dysfunction as a potential contributor in diabetic nephropathy. Nat. Rev. Nephrol. 7: 36–44 (2011)

    Article  Google Scholar 

  3. Weigensberg MJ, Goran MI. Type 2 diabetes in children and adolescents. Lancet. 373: 1743–1744 (2009)

    Article  Google Scholar 

  4. Van Gaal L, Scheen A. Weight Management in Type 2 Diabetes: Current and Emerging Approaches to Treatment. Diabetes Care. 38: 1161–1172 (2015)

    Article  Google Scholar 

  5. Hur J. DongeubogamDongeuhak Institute. Ryogang, Seoul, Korea. pp. 2803–2805 (1994)

    Google Scholar 

  6. Kwon EH, Jang HS, Kim SW, Choi SW, Rhee SJ, Cho SH. Effects of mulberry juice and cake powders on blood glucose and lipid lowering and erythrocyticantioxidative enzyme activities in streptozotocin-induced diabetic rats. Korean J. Nut. 40: 199–210 (2007)

    CAS  Google Scholar 

  7. Katsube T, Yamasaki M, Shiwaku K, Ishijima T. Effect of flavonol glycoside in mulberry (Morus alba L.) leaf on glucose metabolism and oxidative stress in liver in diet-induced obese mice. J. Sci. Food Agric. 90: 2386–2392 (2010)

    Article  CAS  Google Scholar 

  8. Ye F, Shen Z, Xie M. Alpha-glucosidase inhibition from a Chinese medical herb (Ramulusmori) in normal and diabetic rats and mice. Phytomedicine. 9: 161–166 (2002)

    Article  CAS  Google Scholar 

  9. Guo C, Li R, Zheng N, Xu L, Liang T, He Q. Anti-diabetic effect of ramulusmori polysaccharides, isolated from Morus alba L., on STZ-diabetic mice through blocking inflammatory response and attenuating oxidative stress. Int. Immunopharmacol. 16: 93–99 (2013)

    Article  CAS  Google Scholar 

  10. Zhang MI, Chen M, Zhang HQ, Sun S, Xia B, Wu FH. In vivo hypoglycemic effects of phenolics from the root bark of Morus alba. Fitoterapia. 80: 475–477 (2009)

    Article  CAS  Google Scholar 

  11. Choi SW, Lee YJ, Ha SB, Jeon YH, Lee DH. Evaluation of biological activity and analysis of functional constituents from different parts of mulberry (Morus alba L.) Tree. J. Korean Soc. Food Sci. Nutr. 44: 823–831 (2015)

  12. Choi SW, Jang YJ, Lee YJ, Leem HH, Kim EO. Analysis of Functional Constituents in Mulberry (Morus alba L.) Twigs by Different Cultivars, Producing Areas, and Heat Processings. Prev. Nutr. Food Sci. 18: 256–262 (2013)

  13. Chen YC, Tien YJ, Chen CH, Beltran FN, Amor EC, Wang RJ, Wu DJ, Mettling C, Lin YL, Yang WC. Morus alba and active compound oxyresveratrol exert anti-inflammatory activity via inhibition of leukocyte migration involving MEK/ERK signaling. BMC Complement Altern. Med. 13: 45 (2013)

    Article  Google Scholar 

  14. Zheng ZP, Cheng KW, Zhu Q, Wang XC, Lin ZX, Wang MF. Tyrosinase inhibitory constituents from the roots of Morusnigra: A structure-activity relationship study. J. Agric. Food Chem. 58: 5368–5373 (2010)

    Article  CAS  Google Scholar 

  15. Lorenz P, Roychowdhury S, Engelmann M, Wolf G, Horn TF. Oxyresveratrol and resveratrol are potent antioxidants and free radical scavengers: effect on nitrosative and oxidative stress derived from microglial cells. Nitric Oxide. 9: 64–76 (2003)

    Article  CAS  Google Scholar 

  16. Dahlqvist A. Assay of intestinal disaccharidases. Scand. J. Clin. Lab Invest. 44: 169–172 (1984)

    Article  CAS  Google Scholar 

  17. Seifter S, Dayton S. The estimation of glycogen with the anthrone reagent. Arch. Biochem. 25: 191–200 (1950)

    CAS  Google Scholar 

  18. Pfaffl MW. A new mathematical model for relative quantification in real-time RT–PCR. Nucleic Acids Res. 29: e45 (2001)

    Article  CAS  Google Scholar 

  19. Zhou J, Xu G, Yan J, Li K, Bai Z, Cheng W, Huang K. Rehmanniaglutinosa (Gaertn.) DC. polysaccharide ameliorates hyperglycemia, hyperlipemia and vascular inflammation in streptozotocin-induced diabetic mice. J. Ethnopharmacol. 164: 229–238 (2015)

    Article  CAS  Google Scholar 

  20. Wang Z, Gleichmann H. GLUT2 in pancreatic islets: crucial target molecule in diabetes induced with multiple low doses of streptozotocin in mice. Diabetes. 47: 50–56 (1998)

    Article  CAS  Google Scholar 

  21. Chassaing B, Raja SM, Lewis JD, Srinivasan S, Gewirtz AT. Colonic microbiota encroachment correlates with dysglycemia in humans. Available from: http://dx.doi.org/10.1016/j.jcmgh.2017.04.001. Accessed April 2017

  22. Wei SH, Chen YP, Chen MJ. Selecting probiotics with the abilities of enhancing GLP-1 to mitigate the progression of type 1 diabetes in vitro and in vivo. J. Funct. Foods. 18: 473–486 (2015)

    Article  CAS  Google Scholar 

  23. Qiu F, Komatsu K, Saito K, Kawasaki K, Yao X, Kano Y. Pharmacological properties of traditional medicines. XXII. Pharmacokinetic study of mulberroside A and its metabolites in rat. Biol. Pharm. Bull. 19: 1463–1467 (1996)

    Article  CAS  Google Scholar 

  24. Shin NH, Ryu SY, Lee H, Min KR, Kim Y. Inhibitory effects of hydroxystilbenes on cyclooxygenase from sheep seminal vesicles. Planta Med. 64: 283–284 (1998)

    Article  CAS  Google Scholar 

  25. Wang Q, Xu J, Rottinghaus GE, Simonyi A, Lubahn D, Sun GY, Sun AY. Resveratrol protects against global cerebral ischemic injury in gerbils. Brain Res. 958: 439–447 (2002)

    Article  CAS  Google Scholar 

  26. Mouihate A, Horn TF, Pittman QJ. Oxyresveratrol dampens neuroimmune responses in vivo: a selective effect on TNF-alpha. Am. J. Physiol. Regul. Integr. Comp. Physiol. 291: R1215–1221 (2006)

    Article  CAS  Google Scholar 

  27. Lam KS, Tiu SC, Tsang MW, Ip TP, Tam SC. Acarbose in NIDDM patients with poor control on conventional oral agents. A 24-week placebo-controlled study. Diabetes Care. 21: 1154–1158 (1998)

    Article  CAS  Google Scholar 

  28. Deng YX, Chen YS, Zhang WR, Chen B, Qiu XM, He LH, Mu LL, Yang CH, Chen R. Polysaccharide from Gynuradivaricata modulates the activities of intestinal disaccharidases in streptozotocin-induced diabetic rats. Br. J. Nutr. 106: 1323–1329 (2011)

    Article  CAS  Google Scholar 

  29. Williams TF, Exton JH, Park CR, Regen DM. Stereospecific transport of glucose in the perfused rat liver. Am. J. Physiol. 215: 1200–1209 (1968)

    CAS  Google Scholar 

  30. Thorens B, Sarkar HK, Kaback HR, Lodish HF. Cloning and functional expression in bacteria of a novel glucose transporter present in liver, intestine, kidney, and beta-pancreatic islet cells. Cell. 55: 281–290 (1988)

    Article  CAS  Google Scholar 

  31. Thorens B, Flier JS, Lodish HF, Kahn BB. Differential regulation of two glucose transporters in rat liver by fasting and refeeding and by diabetes and insulin treatment. Diabetes. 39: 712–719 (1990)

    Article  CAS  Google Scholar 

  32. Im SS, Kang SY, Kim SY, Kim HI, Kim JW, Kim KS, Ahn YH. Glucose-stimulated upregulation of GLUT2 gene is mediated by sterol response element-binding protein-1c in the hepatocytes. Diabetes. 54: 1684–1691 (2005)

    Article  CAS  Google Scholar 

  33. Akarte AS, Srinivasan BP, Gandhi S. Vildagliptin selectively ameliorates GLP-1, GLUT4, SREBP-1c mRNA levels and stimulates beta-cell proliferation resulting in improved glucose homeostasis in rats with streptozotocin-induced diabetes. J. Diabetes Complications. 26: 266–274 (2012)

    Article  Google Scholar 

  34. Welihinda J, Karunanayake EH. Extra-pancreatic effects of Momordicacharantia in rats. J. Ethnopharmacol. 17: 247–255 (1986)

    Article  CAS  Google Scholar 

  35. Rashid K, Das J, Sil PC. Taurine ameliorate alloxan induced oxidative stress and intrinsic apoptotic pathway in the hepatic tissue of diabetic rats. Food Chem. Toxicol. 51: 317–329 (2013)

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This study was supported by Regional Innovation System (RIS) program (R0002111), Ministry of Trade, Industry and Energy, Republic of Korea.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Eunjung Kim.

Ethics declarations

Conflict of interest

All authors declare that they have no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ahn, E., Lee, J., Jeon, YH. et al. Anti-diabetic effects of mulberry (Morus alba L.) branches and oxyresveratrol in streptozotocin-induced diabetic mice. Food Sci Biotechnol 26, 1693–1702 (2017). https://doi.org/10.1007/s10068-017-0223-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10068-017-0223-y

Keywords

Navigation