Skip to main content
Log in

Antibacterial characteristics of glycinin basic polypeptide against Staphylococcus aureus

  • Published:
Food Science and Biotechnology Aims and scope Submit manuscript

Abstract

This paper aims to study the antibacterial action of glycinin basic polypeptide (GBP) on Staphylococcus aureus (S. aureus). Herein, the minimum inhibitory concentration (MIC) of GBP against S. aureus was 0.2 mg/mL. Atomic force microscopy (AFM) imaging showed that GBP seriously damaged the morphology of the S. aureus cells. GBP (0.8 mg/mL) enhanced the relative release of β-galactosidase to 25.48% when compared to the control. The activity of the respiratory-chain dehydrogenase of S. aureus decreased with increasing GBP concentration. GBP could cause a leakage of intracellular substances. Additionally, sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE) demonstrated that S. aureus bacterial proteins decreased in response to the time period of treating the bacterial cells with GBP. These results indicate that GBP could remarkably inhibit S. aureus and is, therefore, a potential food preservative.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Carocho M, Barreiro MF, Morales P, Ferreira IC. Adding molecules to food, pros and cons: A review on synthetic and natural food additives. Compr. Rev. Food Sci. F. 13: 377–399 (2014)

    Article  Google Scholar 

  2. Li YQ, Han Q, Feng JL, Tian WL, Mo HZ. Antibacterial characteristics and mechanisms of e-poly-lysine against Escherichia coli and Staphylococcus aureus. Food Control 43: 22–27 (2014)

    Article  CAS  Google Scholar 

  3. Gyawali R, Ibrahim SA. Natural products as antimicrobial agents. Food Control 46: 412–429 (2014)

    Article  CAS  Google Scholar 

  4. Tang WT, Yuan HN, Zhang H, Wang L, Qian HF, Qi XG. An antimicrobial peptide screened from casein hydrolyzate by Saccharomyces cerevisiae cell membrane affinity method. Food Control 50: 413–422 (2015)

    Article  CAS  Google Scholar 

  5. Park CB, Lee JH, Park IY, Kim MS, Kim SC. A novel antimicrobial peptide from the loach, Misgurnus anguillicaudatus. FEBS Lett. 411: 173–178 (1997)

    Article  CAS  Google Scholar 

  6. Todorov SD, Wachsman MB, Knoetze H, Meincken M, Dicks LM. An antibacterial and antiviral peptide produced by Enterococcus mundtii ST4V isolated from soya beans. Int. J. Antimicrob. Ag. 25: 508–513 (2005)

    Article  CAS  Google Scholar 

  7. Oguro Y, Yamazaki H, Takagi M, Takaku H. Antifungal activity of plant defensin AFP1 in Brassica juncea involves the recognition of the methyl residue in glucosylceramide of target pathogen Candida albicans. Curr. Genet. 60: 89–97 (2014)

    Article  CAS  Google Scholar 

  8. Fernandez DI, Le Brun AP, Whitwell TC, Sani MA, James M, Separovic F. The antimicrobial peptide aurein 1.2 disrupts model membranes via the carpet mechanism. Phys. Chem. Chem. Phys. 14: 15739–15751 (2012)

    Article  CAS  Google Scholar 

  9. Park SC, Kim JY, Lee JK, Hahm KS, Park Y. Antibacterial action of new antibacterial peptides, Nod1 and Nod2, isolated from Nordotis discus discus. J. Agr. Food Chem. 60: 6875–6881 (2012)

    Article  CAS  Google Scholar 

  10. Sung WS, Park Y, Choi CH, Hahm KS, Lee DG. Mode of antibacterial action of a signal peptide, Pep27 from Streptococcus pneumonia, Biochem. Biophys. Res. Co. 363: 806–810 (2007)

    Article  CAS  Google Scholar 

  11. Hu SD, Liu H, Qiao SY, He PL, Ma X, Lu WQ. Development of immunoaffinity chromatographic method for isolating glycinin (11S) from soybean proteins. J. Agr. Food Chem. 61: 4406–4410 (2013)

    Article  CAS  Google Scholar 

  12. Sitohy MZ, Mahgoub SA, Osman AO. in vitro and in situ antimicrobial action and mechanism of glycinin and its basic subunit. Int. J. Food Microbiol. 154: 19–29 (2012)

    Article  CAS  Google Scholar 

  13. Damodaran S, Kinsella JE. Effect of conglycinin on the thermal aggregation of glycinin. J. Agr. Food Chem. 30: 812–817 (1982)

    Article  CAS  Google Scholar 

  14. Delwiche SR, Pordesimo LO, Panthee DR, Pantalone VR. Aßsessing glycinin (11S) and ß-conglycinin (7S) fractions of soybean storage protein by nearinfrared spectroscopy. J. Am. Oil Chem. Soc. 84: 1107–1115 (2007)

    Article  CAS  Google Scholar 

  15. Mo XQ, Zhong ZK, Wang DH, Sun XZ. Soybean glycinin subunits: characterization of physicochemical and adhesion properties. J. Agr. Food Chem. 54: 7589–7593 (2006)

    Article  CAS  Google Scholar 

  16. Osman A, El-Didamony G, Sitohy M, Khalifa M, Enan G. Soybean glycinin basic subunit inhibits methicillin resistant-vancomycin intermediate Staphylococcus aureus (MRSA-VISA) in vitro. Int. J. Appl. Res. Nat. Prod. 9: 17–26 (2016)

    Google Scholar 

  17. Nagano T, Hirotsuka M, Mori H, Kohyama K, Nishinari K. Dynamic viscoelastic study on the gelation of 7S globulin from soybeans. J. Agr. Food Chem. 40: 941–944 (1992)

    Article  CAS  Google Scholar 

  18. Ibrahim HR, Sugimoto Y, Aoki T. Ovotransferrin antimicrobial peptide (OTAP-92) kills bacteria through a membrane damage mechanism. Biochim. Biophys. Acta 1523: 196–205 (2000)

    Article  CAS  Google Scholar 

  19. Beloti V, Barros MA, de Freitas JC, Nero LA, de Souza JA, Santana EH, Franco BDGM. Frequency of 2,3,5-triphenyltetrazolium chloride (TTC) non-reducing bacteria in pasteurized milk. Rev. Microbiol. 30: 137–140 (1999)

    Article  CAS  Google Scholar 

  20. Mohammadzadeh A, Farnia P, Ghazvini K, Behdani M, Rashed T, Ghanaat J. Rapid and low-cost colorimetric method using 2,3,5-triphenyltetrazolium chloride for detection of multidrug-resistant Mycobacterium tuberculosis. J. Med. Microbiol. 55: 1657–1659 (2006)

    Article  CAS  Google Scholar 

  21. Zhou QH, Wu ZB, Cheng SP, He F, Fu GP. Enzymatic activities in constructed wetlands and di-n-butyl phthalate (DBP) biodegradation. Soil Biol. Biochem. 37: 1454–1459 (2005)

    Article  CAS  Google Scholar 

  22. Klapwuk A, Drent J, Steenvoorden JHAM. A modified procedure for the TTCdehydrogenase test in activated-sludge. Water Res. 8: 121–125 (1974)

    Article  Google Scholar 

  23. Neethirajan S, Di Cicco M. Atomic force microscopy study of the antibacterial effect of fosfomycin on methicillin-resistant Staphylococcus pseudintermedius. Appl. Nanosci. 4: 703–709 (2014)

    Article  CAS  Google Scholar 

  24. Nan L, Liu YQ, Lü MQ, Yang K. Study on antibacterial mechanism of copperbearing austenitic antibacterial stainless steel by atomic force microscopy. J. Mater. Sci.-Mater. M. 19: 3057–3062 (2008)

    Article  CAS  Google Scholar 

  25. Li A, Lee PY, Ho B, Ding JL, Lim CT. Atomic force microscopy study of the antimicrobial action of Sushi peptides on Gram negative bacteria. Biochim. Biophys. Acta 1768: 411–418 (2007)

    Article  CAS  Google Scholar 

  26. Jang SA, Kim H, Lee JY, Shin JR, Kim DJ, Cho JH, Kim SC. Mechanism of action and specificity of antimicrobial peptides designed based on buforin IIb. Peptides 34: 283–289 (2012)

    Article  CAS  Google Scholar 

  27. Xing K, Chen XG, Kong M, Liu CS, Cha DS, Park HJ. Effect of oleoyl-chitosan nanoparticles as a novel antibacterial dispersion system on viability, membrane permeability and cell morphology of Escherichia coli and Staphylococcus aureus. Carbohyd. Polym. 76: 17–22 (2009)

    Article  CAS  Google Scholar 

  28. Du W, Sun CL, Liang ZQ, Han YF, Yu, JP. Antibacterial activity of hypocrellin A against Staphylococcus aureus. World J. Microb. Biot. 28: 3151–3157 (2012)

    Article  CAS  Google Scholar 

  29. Li WR, Xie XB, Shi QS, Duan SS, Ouyang YS, Chen YB. Antibacterial effect of silver nanoparticles on Staphylococcus aureus. Biometals 24: 135–141 (2011)

    Article  CAS  Google Scholar 

  30. Haraguchi H, Tanimoto K, Tamura Y, Mizutani K, Kinoshita T. Mode of antibacterial action of retrochalcones from Glycyrrhizainflata. Phytochemistry 48: 125–129 (1998)

    Article  CAS  Google Scholar 

  31. Kubo I, Nihei KI, Tsujimoto K. Antibacterial action of anacardic acids against methicillin-resistant Staphylococcus aureus (MRSA). J. Agr. Food Chem. 51: 7624–7628 (2003)

    Article  CAS  Google Scholar 

  32. Moosavy MH, Basti AA, Misaghi A, Salehi TZ, Abbasifar R, Mousavi HAE, Alipour M, Razavi NE, Gandomi H, Noori N. Effect of Zataria multiflora Boiss.essential oil and nisin on Salmonella typhimurium and Staphylococcus aureus in a food model system and on the bacterial cell membranes. Food Res. Int. 41: 1050–1057 (2008)

    Article  CAS  Google Scholar 

  33. Tang WT, Zhang H, Wang L, Qian HF. Antimicrobial peptide isolated from ovalbumin hydrolysate by immobilized liposome-binding extraction. Eur. Food Res. Technol. 237: 591–600 (2013)

    Article  CAS  Google Scholar 

  34. Tang YL, Shi YH, Zhao W, Hao G, Le GW. Discovery of a novel antimicrobial peptide using membrane binding-based approach. Food Control 20: 149–156 (2009)

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ying-Qiu Li.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yang, J., Sun, GJ., Li, YQ. et al. Antibacterial characteristics of glycinin basic polypeptide against Staphylococcus aureus . Food Sci Biotechnol 25, 1477–1483 (2016). https://doi.org/10.1007/s10068-016-0229-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10068-016-0229-x

Keywords

Navigation