Skip to main content
Log in

Molecular cloning, characterization, and application of a novel thermostable α-glucosidase from the hyperthermophilic archaeon Pyrobaculum aerophilum strain IM2

  • Research Article
  • Published:
Food Science and Biotechnology Aims and scope Submit manuscript

Abstract

A novel hyperthermostable α-glucosidase from the hyperthermophilic archaeon Pyrobaculum aerophilum str. IM2 (PAE1968) was successfully expressed in Escherichia coli and characterized. Recombinant PAE1968 was purified using Ni-NTA affinity chromatography to reveal a glycosidase with a predicted molecular weight (Mw) of 76 kDa. PAE1968 liberated glucose from the non-reducing ends of oligosaccharides. Multiple sequence alignment confirmed that the enzyme belonged to glycoside hydrolase (GH) family 31, and a kinetic study showed that the enzyme had a substrate preference for maltose (G2), indicating a Type-II α-glucosidase. The optimum operating conditions for the enzyme were 90°C and pH 6.0, while the enzyme retained at least 80% of maximal activity at pH 4.5–7.5. Transglycosylation and reversion reactions of PAE1968 were of a lower magnitude than for a commercial saccharification enzyme, indicating that this enzyme can be used for glucose production in the starch industry.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Bertoldo C, Antranikian G. Starch-hydrolyzing enzymes from thermophilic archaea and bacteria. Curr. Opin. Chem. Biol. 6: 151–160 (2002)

    Article  CAS  Google Scholar 

  2. Eichler J. Biotechnological uses of archaeal extremozymes. Biotechnol. Adv. 19: 261–278 (2001)

    Article  CAS  Google Scholar 

  3. Hough DW, Danson MJ. Extremozymes. Curr. Opin. Chem. Biol. 3: 39–46 (1999)

    Article  CAS  Google Scholar 

  4. Kim MS, Park JT, Kim YW, Lee HS, Nyawira R, Shin HS, Park CS, Yoo SH, Kim YR, Moon TW, Park KH. Properties of a novel thermostable glucoamylase from the hyperthermophilic archaeon Sulfolobus solfataricus in relation to starch processing. Appl. Environ. Microb. 70: 3933–3940 (2004)

    Article  CAS  Google Scholar 

  5. Angelov A, Putyrski M, Liebl W. Molecular and biochemical characterization of alpha-glucosidase and alpha-mannosidase and their clustered genes from the thermoacidophilic archaeon Picrophilus torridus. J. Bacteriol. 188: 7123–7131 (2006)

    Article  CAS  Google Scholar 

  6. Costantino HR, Brown SH, Kelly RM. Purification and characterization of an alpha-glucosidase from a hyperthermophilic archaebacterium, Pyrococcus furiosus, exhibiting a temperature optimum of 105 to 115 degrees C. J. Bacteriol. 172: 3654–3660 (1990)

    CAS  Google Scholar 

  7. Di Lernia I, Morana A, Ottombrino A, Fusco S, Rossi M, De Rosa M. Enzymes from Sulfolobus shibatae for the production of trehalose and glucose from starch. Extremophiles 2: 409–416 (1998)

    Article  Google Scholar 

  8. Galichet A, Belarbi A. Cloning of an alpha-glucosidase gene from Thermococcus hydrothermalis by functional complementation of a Saccharomyces cerevisiae mal11 mutant strain. FEBS Lett. 458: 188–192 (1999)

    Article  CAS  Google Scholar 

  9. Linke B, Rüdiger A, Wittenberg G, Jorgensen PL, Antranikian G. Production of heat-stable pullulanase and α-glucosidase from the extremely thermophilic archaeon Pyrococcus woesei. Dechema Bio. 5: 161–163 (1992)

    CAS  Google Scholar 

  10. Park JE, Park SH, Woo JY, Hwang HS, Cha J, Lee H. Enzymatic properties of a thermostable alpha-glucosidase from acidothermophilic crenarchaeon Sulfolobus tokodaii strain 7. J. Microbiol. Biotechn. 23: 56–63 (2013)

    Article  CAS  Google Scholar 

  11. Piller K, Daniel RM, Petach HH. Properties and stabilization of an extracellular alpha-glucosidase from the extremely thermophilic archaebacteria Thermococcus strain AN1: Enzyme activity at 130 degrees C. Biochim. Biophys. Acta 1292: 197–205 (1996)

    Article  Google Scholar 

  12. Rolfsmeier M, Blum P. Purification and characterization of a maltase from the extremely thermophilic crenarchaeote Sulfolobus solfataricus. J. Bacteriol. 177: 482–485 (1995)

    CAS  Google Scholar 

  13. Rolfsmeier M, Haseltine C, Bini E, Clark A, Blum P. Molecular characterization of the alpha-glucosidase gene (malA) from the hyperthermophilic archaeon Sulfolobus solfataricus. J. Bacteriol. 180: 1287–1295 (1998)

    CAS  Google Scholar 

  14. Vihinen M, Mantsala P. Microbial amylolytic enzymes. Crit. Rev. Biochem. Mol. 24: 329–418 (1989)

    Article  CAS  Google Scholar 

  15. Nakai H, Okuyama M, Kim YM, Saburi W, Wongchawalit J, Mori H, Chiba S, Kimura A. Molecular analysis of α-glucosidase belonging to GH-family 31. Biol. Brat. 60: 131–135 (2005)

    CAS  Google Scholar 

  16. Song KM, Okuyama M, Kobayashi K, Mori H, Kimura A. Characterization of a glycoside hydrolase family 31 alpha-glucosidase involved in starch utilization in Podospora anserina. Biosci. Biotech. Bioch. 77: 2117–2124 (2013)

    Article  CAS  Google Scholar 

  17. Kelly CT, Giblin M, Fogarty WM. Resolution, purification, and characterization of two extracellular glucohydrolases, α-glucosidase and maltase of Bacillus licheniformis. Can. J. Microbiol. 32: 342–347 (1986)

    Article  CAS  Google Scholar 

  18. Watanabe K, Miyake K, Suzuki Y. Identification of catalytic and substrate-binding site residues in Bacillus cereus ATCC7064 oligo-1,6-glucosidase. Biosci. Biotech. Bioch. 65: 2058–2064 (2001)

    Article  CAS  Google Scholar 

  19. Henrissat B. A classification of glycosyl hydrolases based on amino acid sequence similarities. Biochem. J. 280 (Pt 2): 309–316 (1991)

    CAS  Google Scholar 

  20. Henrissat B, Bairoch A. New families in the classification of glycosyl hydrolases based on amino acid sequence similarities. Biochem. J. 293 (Pt 3): 781–788 (1993)

    CAS  Google Scholar 

  21. Ernst HA, Willemoës M, Lo Leggio L, Leonard G, Blum P, Larsen S. Characterization of different crystal forms of the alphaglucosidase MalA from Sulfolobus solfataricus. Acta Crystallogr. F 61: 1039–1042 (2005)

    Article  CAS  Google Scholar 

  22. Chiba S. Molecular mechanism in alpha-glucosidase and glucoamylase. Biosci. Biotech. Bioch. 61: 1233–1239 (1997)

    Article  CAS  Google Scholar 

  23. Zhou C, Xue Y, Ma Y. Enhancing the thermostability of alpha-glucosidase from Thermoanaerobacter tengcongensis MB4 by single proline substitution. J. Biosci. Bioeng. 110: 12–17 (2010)

    Article  CAS  Google Scholar 

  24. Manjunath P, Shenoy BC, Raghavendra Rao MR. Fungal glucoamylases. J. Appl. Biochem. 5: 235–260 (1983)

    CAS  Google Scholar 

  25. Njoroge RD, Li D, Park JT, Cha H, Kim MS, Kim JW, Park KH. Characterization and application of a nover thermostable glucoamylase cloned from a hyperthermophilic archaeon Sulfolobus tokodaii. Food Sci. Biotechnol. 14: 860–865 (2005)

    CAS  Google Scholar 

  26. Shim JH, Chen HM, Rich JR, Goddard-Borger ED, Withers SG. Directed evolution of a beta-glycosidase from Agrobacterium sp. to enhance its glycosynthase activity toward C3-modified donor sugars. Protein Eng. Des. Sel. 25: 465–472 (2012)

    Article  CAS  Google Scholar 

  27. Song KM, Shim JH, Park JT, Kim SH, Kim YW, Boos W, Park KH. Transglycosylation properties of maltodextrin glucosidase (MalZ) from Escherichia coli and its application for synthesis of a nigerose-containing oligosaccharide. Biochem. Bioph. Res. Co. 397: 87–92 (2010)

    Article  CAS  Google Scholar 

  28. Kim YW, Choi JH, Kim JW, Park C, Cha H, Lee SB, Oh BH, Moon TW, Park KH. Directed evolution of Thermus maltogenic amylase toward enhanced thermal resistance. Appl. Environ. Microb. 69: 4866–4874 (2003)

    Article  CAS  Google Scholar 

  29. Shim JH, Oh BC. Characterization and application of calcium-dependent beta-propeller phytase from Bacillus amyloliquefaciens DS11. J. Agr. Food Chem. (2012)

    Google Scholar 

  30. Jeon YE, Yin XF, Choi DB, Lim SS, Kang IJ, Shim JH. Inhibitory activity of aromadendrin from prickly pear (Opuntia ficus-indica) root on aldose reductase and the formation of advanced glycation end products. Food Sci. Biotechnol. 20: 1283–1288 (2011)

    Article  CAS  Google Scholar 

  31. Yang SJ, Min BC, Kim YW, Jang SM, Lee BH, Park KH. Changes in the catalytic properties of Pyrococcus furiosus thermostable amylase by mutagenesis of the substrate binding sites. Appl. Environ. Microb. 73: 5607–5612 (2007)

    Article  CAS  Google Scholar 

  32. Cha HJ, Yoon HG, Kim YW, Lee HS, Kim JW, Kweon KS, Oh BH, Park KH. Molecular and enzymatic characterization of a maltogenic amylase that hydrolyzes and transglycosylates acarbose. Eur. J. Biochem. 253: 251–262 (1998)

    Article  CAS  Google Scholar 

  33. Kuriki T, Imanaka T. Characterization of thermostable pullulanase from Bacillus stearothermophilus and the nucleotide sequence of the gene. J. Gen. Microbiol. 135: 1521–1528 (1989)

    CAS  Google Scholar 

  34. Park JT, Song HN, Jung TY, Lee MH, Park SG, Woo EJ, Park KH. A novel domain arrangement in a monomeric cyclodextrin-hydrolyzing enzyme from the hyperthermophile Pyrococcus furiosus. Biochim. Biophys. Acta 1834: 380–386 (2013)

    Article  CAS  Google Scholar 

  35. Seo SH, Choi KH, Hwang S, Kim J, Park CS, Rho JR, Cha J. Characterization of the catalytic and kinetic properties of a thermostable Thermoplasma acidophilum α-glucosidase and its transglucosylation reaction with arbutin. J. Mol. Catal. B-Enzym. 72: 305–312 (2011)

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jae-Hoon Shim.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jeon, H., Lee, H., Byun, D. et al. Molecular cloning, characterization, and application of a novel thermostable α-glucosidase from the hyperthermophilic archaeon Pyrobaculum aerophilum strain IM2. Food Sci Biotechnol 24, 175–182 (2015). https://doi.org/10.1007/s10068-015-0024-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10068-015-0024-0

Keywords

Navigation