Skip to main content
Log in

Hypolipidemic and antioxidative effects of rice bran and phytic acid in high fat-fed mice

  • Research Article
  • Published:
Food Science and Biotechnology Aims and scope Submit manuscript

Abstract

The influence of rice bran and phytic acid on lipid metabolism and antioxidative status in high fat-fed mice was investigated. The mice were given high fat diet (HF) or high fat diet supplemented with rice bran (HF-RB) or phytic acid (HF-PA) for 7 weeks. The control mice (NC) received normal diet. The HF mice showed marked increase in body weight, total cholesterol levels, hepatic triglyceride concentration, and lipid peroxidation rate compared with NC group. Also, a significant decrease in antioxidant enzyme activities was observed in HF animals. Addition of rice bran and phytic acid in the diet counteracted this high fatinduced hyperlipidemia and oxidative stress, mainly by increasing fecal lipid excretion and regulation of antioxidant and lipogenic enzyme activities. These findings illustrate that rice bran and phytic acid possess antihyperlipidemic action and antioxidant status-improving ability, and may be beneficial as dietary supplements in the management of high fat diet-induced hyperlipidemia.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Martin-Tereso J, Gonzalez A, Laar HV, Burbano C, Pedrosa MM, Mulder K, den Hartog LA, Verstegen MWA. In situ ruminal degradation of phytic acid in formaldehyde-treated rice bran. Anim. Feed Sci. Tech. 152: 286–297 (2009)

    Article  CAS  Google Scholar 

  2. Graf E, Eaton JW. Antioxidant functions of phytic acid. Free Radical Bio. Med. 8: 61–69 (1990)

    Article  CAS  Google Scholar 

  3. Shamsuddin AM. Anti-cancer function of phytic acid. Int. J. Food. Sci. Tech. 37: 769–782 (2002)

    Article  CAS  Google Scholar 

  4. Shamsuddin AM, Vucenik I. IP6 and inositol in cancer prevention and therapy. Curr. Cancer Ther. Rev. 1: 259–269 (2005)

    Article  CAS  Google Scholar 

  5. Lee SH, Park HJ, Cho SY, Jung HJ, Cho SM, Cho YS, Lillehoj HS. Effects of dietary phytic acid on serum and hepatic lipid levels in diabetic KK mice. Nutr. Res. 25: 869–876 (2005)

    Article  CAS  Google Scholar 

  6. Lee SH, Park HJ, Chun HK, Cho SY, Cho SM, Lillehoj HS. Effects of dietary phytic acid on the blood glucose level in diabetic KK mice. Nutr. Res. 26: 474–479 (2006)

    Article  CAS  Google Scholar 

  7. Bray GA, Popkin BM. Dietary fat intake does affect obesity. Am. J. Clin. Nutr. 68: 1157–1173 (1998)

    CAS  Google Scholar 

  8. Kahlon TS, Chow FL, Sayre RN. Cholesterol lowering properties of rice bran. Cereal Food. World 39: 99–103 (1993)

    Google Scholar 

  9. McNamara DJ. Dietary cholesterol and atherosclerosis. Biochim. Biophys. Acta 1529: 310–320 (2000)

    CAS  Google Scholar 

  10. Roberts CK, Barnard RJ, Sindhu RK, Jurczak M, Ehdaie A, Vaziri ND. Oxidative stress and dysregulation of NADPH oxidase and antioxidant enzymes in diet-induced metabolic syndrome. Metabolism 55: 928–934 (2006)

    Article  CAS  Google Scholar 

  11. Lee SH, Park HJ, Chun HK, Cho SY, Jung HJ, Cho SM, Kim DY, Kang MS, Lillehoj HS. Dietary phytic acid improves serum and hepatic lipid levels in aged ICR mice fed a high-cholesterol diet. Nutr. Res. 27: 505–510 (2007)

    Article  CAS  Google Scholar 

  12. Folch JM, Lee M, Stanely GHS. A sample method for the isolation and purification of total lipids from animal tissue. J. Biol. Chem. 26: 497–509 (1957)

    Google Scholar 

  13. Ohkawa H, Ohishi N, Yagi K. Assay for lipid peroxides in animal tissues by thiobarbituric acid reaction. Anal. Biochem. 95: 351–358 (1979)

    Article  CAS  Google Scholar 

  14. Beutler E. Red Cell Metabolism: A Manual of Biochemical Methods. Grune and Stratton, New York, NY, USA. pp. 62–64 (1971)

    Google Scholar 

  15. Ochoa S. Malic dehydrogenase from pig heart. Vol. 2, pp. 735–739. In: Methods in Enzymology. Colowick SP, Kaplan NO (eds). Academic Press, New York, NY, USA (1955)

  16. Gibson DM, Hubbard DD. Incorporation of malonyl CoA into fatty acids by liver in starvation and alloxan-diabetes. Biochem. Bioph. Res. Co. 3: 531–535 (1960)

    Article  CAS  Google Scholar 

  17. Marklund S, Marklund G. Involvement of the superoxide anion radical in the autoxidation of pyrogallol and convenient assay for superoxide dismutase. Eur. J. Biochem. 47: 469–474 (1974)

    Article  CAS  Google Scholar 

  18. Aebi H. Catalase. Vol. 2, pp. 673–684. In: Method of Enzymatic Analysis. Bergmeyer HU (ed). Academic Press, New York, NY, USA (1974)

    Google Scholar 

  19. Paglia ED, Valentine WN. Studies on quantitative and qualitative characterization of erythrocyte glutathione peroxidase. J. Lab. Clin. Med. 70: 158–169 (1967)

    CAS  Google Scholar 

  20. Mize CE, Langdon RG. Hepatic glutathione reductase, purification, and general kinetic properties. J. Biol. Chem. 237: 1589–1595 (1952)

    Google Scholar 

  21. Mackness MI, Arrol S, Durrington PN. Paraoxonase prevents accumulation of lipoperoxides in low-density lipoprotein. FEBS Lett. 286: 152–154 (1991)

    Article  CAS  Google Scholar 

  22. Lee JS, Lee MK, Ha TY, Bok SH, Park HM, Jeong KS, Woo MN, Do GM, Yeo JY, Choi MS. Supplementation of whole persimmon leaf improves lipid profiles and suppresses body weight gain in rats fed high-fat diet. Food Chem. Toxicol. 44: 1875–1883 (2006)

    Article  CAS  Google Scholar 

  23. Woo MN, Bok SH, Choi MS. Hypolipidemic and body fat-lowering effects of Fatclean in rats fed a high-fat diet. Food Chem. Toxicol. 47: 2076–2082 (2009)

    Article  CAS  Google Scholar 

  24. Cicero AFG, Derosa G. Rice bran and its main components: Potential role in the management of coronary risk factors. Curr. Top Nutraceut. Res. 3: 29–46 (2005)

    CAS  Google Scholar 

  25. Xu Z, Hua N, Godber S. Antioxidant activity of tocopherols, tocotrienols, and γ-oryzanol components from rice bran against cholesterol oxidation accelerated by 2,2′-azobis(2-methylpropionamidine) dihydrochloride. J. Agr. Food. Chem. 49: 2077–2081 (2001)

    Article  CAS  Google Scholar 

  26. Sakamoto K, Tabata T, Shirasaki K, Inagaki T, Nakayama S. Effects of γ-oryzanol and cycloartenol ferulic acid ester on cholesterol diet induced hyperlipidemia in rats. Jpn. J. Pharmacol. 45: 559–565 (1987)

    Article  CAS  Google Scholar 

  27. Rukmini C, Raghuram TC. Nutritional and biochemical aspects of the hypolipidemic action of rice bran oil, a review. J. Am. Col. Nutr. 10: 593–601 (1991)

    CAS  Google Scholar 

  28. Khor HT, Chieng DY, Ong KK. Tocotrienols inhibit liver HMGCoA reductase activity in the Guinea pig. Nutr. Res. 15: 537–544 (1995)

    Article  CAS  Google Scholar 

  29. Wilson TA, Idreis HM, Taylor CM, Nicolosi RJ. Whole fat rice bran reduces the development of early aortic atherosclerosis in hypercholesterolemic hamsters compared with wheat bran. Nutr. Res. 22: 1319–1332 (2002)

    Article  CAS  Google Scholar 

  30. Kim HK, Jeong TS, Lee MK, Park YB, Choi MS. Lipid-lowering efficacy of hesperetin metabolites in high-cholesterol fed rats. Clin. Chim. Acta 327: 129–137 (2003)

    Article  CAS  Google Scholar 

  31. Park J, Rho HK, Kim KH, Choi SS, Lee YS, Kim JB. Overexpression of glucose-6-phosphate dehydrogenase is associated with lipid dysregulation and insulin resistance in obesity. Mol. Cell Biol. 25: 5146–5157 (2005)

    Article  CAS  Google Scholar 

  32. Kim HK, Choi S, Choi H. Suppression of hepatic fatty acid synthase by feeding α-linolenic acid rich in perilla oil lowers plasma triacylglycerol level in rats. J. Nutr. Biochem. 15: 485–492 (2004)

    Article  CAS  Google Scholar 

  33. Yang R, Le G, Li A, Zheng J, Shi Y. Effect of antioxidant capacity on blood lipid metabolism and lipoprotein lipase activity of rats fed a high-fat diet. Nutrition 22: 1185–1191 (2006)

    Article  CAS  Google Scholar 

  34. Ibrahim W, Lee US, Yeh CC, Szabo K, Bruckner G, Chow CK. Oxidative stress and antioxidant status in mouse liver: Effects of dietary lipid, vitamin E, and iron. J. Nutr. 127: 1401–1406 (1997)

    CAS  Google Scholar 

  35. Beltowski J, Wojcicka G, Gorny D, Marciniak A. The effect of dietary-induced obesity on lipid peroxidation, antioxidant enzymes, and total plasma antioxidant capacity. J. Physiol. Pharmacol. 51: 883–896 (2000)

    CAS  Google Scholar 

  36. Brawn K, Fridovich I. Superoxide radical and superoxide dismutases: Threat and defense. Acta Physiol. Scand. Suppl. 492: 9–18 (1980)

    CAS  Google Scholar 

  37. Devi GS, Prasad MH, Saraswathi I, Raghu D, Rao DN, Reddy PP. Free radicals antioxidant enzymes and lipid peroxidation in different types of leukemias. Clin. Chim. Acta 293: 53–62 (2000)

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sang-Chul Lee.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kang, M.Y., Kim, S.M., Rico, C.W. et al. Hypolipidemic and antioxidative effects of rice bran and phytic acid in high fat-fed mice. Food Sci Biotechnol 21, 123–128 (2012). https://doi.org/10.1007/s10068-012-0015-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10068-012-0015-3

Keywords

Navigation