Skip to main content
Log in

Comparison of Crataegus pinnatifida Bunge var. typica Schneider and C. pinnatifida Bunge fruits for antioxidant, anti-α-glucosidase, and anti-inflammatory activities

  • Research Article
  • Published:
Food Science and Biotechnology Aims and scope Submit manuscript

Abstract

Two different species of hawthorn, Crataegus pinnatifida Bunge var. typica Schneider (CBS) and Crataegus pinnatifida Bunge (CB) are traditional medicinal plants, which belong to the Crataegus genus of the Rosaceae family. In this study, the antioxidant, anti-α-glucosidase, and anti-inflammatory activities of CBS and CB methanolic extracts were measured. The CB extract showed significantly higher antioxidant activity than CBS extract by several antioxidants properties. Anti-diabetes activity was expressed as α-glucosidase inhibits activity, both extracts showed very low anti-diabetes activity. Furthermore, the inhibitory activity on lipopolysaccharide (LPS) induced nitric oxide (NO) production and pro-inflammatory iNOS and COX-2 mRNA levels were measured. The CBS extract exhibited stronger anti-inflammatory activity than CB extract. Compared the present findings of 2 kinds of Crataegus species, the CB is more suitable for further anti-oxidative research. However, the CBS can potentially be developed into products for the prevention of inflammatory related diseases.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Schüssler M, Hölzl J, Fricke U. Myocardial effects of flavonoids from Crataegus species. Arzneimittelforschung 45: 842–845 (1995)

    Google Scholar 

  2. Weihmayr T, Emst E. Therapeutic effectiveness of crataegus. Fortschr. Med. 114: 27–29 (1996)

    CAS  Google Scholar 

  3. Hanac T, Bruckel MH. The treatment of mild stable forms of angina pectoris using Crataegutt novo. Therapiewoche 33: 4331–4333 (1983)

    Google Scholar 

  4. Zhang Z, Ho WKK, Huang Y, James AE, Lam LW, Chen ZY. Hawthorn fruit is hypolipidemic in rabbits fed a high cholesterol diet. J. Nutr. 132: 5–10 (2002)

    CAS  Google Scholar 

  5. Froehlicher T, Hennebelle T, Martin-Nizard F, Cleenewerck P, Hilbert JL, Trotin F, Grec S. Phenolic proles and antioxidative effects of hawthorn cell suspensions, fresh fruits, and medicinal dried parts. Food Chem. 115: 897–903 (2009)

    Article  CAS  Google Scholar 

  6. Kim KM, Choi JY, Yoo SE, Park MY, Lee BS, Ko TH, Sung SH, Shin HM, Park JE. HMCO5, herbal extract, inhibits NF-κB expression in lipopolysaccharide treated macrophages and reduces atherosclerotic lesions in cholesterol fed mice. J. Ethnopharmacol. 114: 316–324 (2007)

    Article  CAS  Google Scholar 

  7. Ko SH, Choi SW, Ye SK, Yoo S, Kim HS, Chung MH. Comparison of anti-oxidant activities of seventy herbs that have been used in Korean traditional medicine. Nutr. Res. Pract. 2: 143–151 (2008)

    Article  Google Scholar 

  8. Jayakumar T, Thomas PA, Geraldine P. In-vitro antioxidant activities of an ethanolic extract of the oyster mushroom, Pleurotus ostreatus. IFSET 10: 228–234 (2009)

    CAS  Google Scholar 

  9. Ritchie CS, Kinane DF. Nutrition, inflammation, and periodontal disease. Nutrition 19: 475–476 (2003)

    Article  Google Scholar 

  10. Lee AK, Sung SH, Kim YC, Kim SG. Inhibition of lipopolysaccharide inducible nitric oxide synthase, TNF-α, and COX-2 expression by sauchinone effects on I-κBα phosphorylation, C/EBP and AP-1 activation. Brit. J. Pharmacol. 139: 11–20 (2003)

    Article  CAS  Google Scholar 

  11. MacMicking J, Xie QW, Nathan C. Nitric oxide and macrophage function. Annu. Rev. Immunol. 15: 323–350 (1997)

    Article  CAS  Google Scholar 

  12. Nathan C, Xie QW. Nitric oxide synthases: Roles, tolls, and controls. Cell 78: 915–918 (1994)

    Article  CAS  Google Scholar 

  13. Yoon WJ, Ham YM, Kim KN, Park SY, Lee NH, Hyun CG, Lee WJ. Anti-inflammatory activity of brown alga Dictyota dichotoma in murine macrophage RAW 264.7 cells. J. Med. Plant Res. 3: 001–008 (2009)

    Article  Google Scholar 

  14. Horton ES. NIDDM-the devastating disease. Diabetes Res. Clin. Pr. 28: 3–11 (1995)

    Article  Google Scholar 

  15. Alain DB. Hyperglycaemia and α-glucosidase inhibitors. Diabetes Res. Clin. Pr. 40: 51–55 (1998)

    Article  Google Scholar 

  16. Floris AV, Peter LL, Reinier PA, Eloy HV, Guy ER., Chris VW. α-Glucosidase inhibitors for patients with type 2 diabetes. Diabetes Care 28: 154–162 (2005)

    Article  Google Scholar 

  17. Holman RR. Assessing the potential for α-glucosidase inhibitors in prediabetic states. Diabetes Res. Clin. Pr. 40: 21–25 (1998)

    Article  Google Scholar 

  18. Patricia MH, Steven RH, Jennifer AW, Bryan WW. Effects of a medical food containing an herbal alpha-glucosidase inhibitor on postprandial glycemia and insulinemia in healthy adults. J. Am. Diet. Assoc. 105: 65–71 (2005)

    Google Scholar 

  19. Ames BM, Shigena MK, Hagen TM. Oxidants, antioxidants, and the degenerative diseases of aging. P. Natl. Acad. Sci. USA 90: 7915–7922 (1993)

    Article  CAS  Google Scholar 

  20. Zhang ZS, Chang Q, Zhu M. Characterization of antioxidants present in hawthorn fruits. J. Nutr. Biochem. 12: 144–152 (2001)

    Article  CAS  Google Scholar 

  21. Jayaprakasha GK, Girennavar B, Patil BS. Radical scavenging activities of Rio Red grapefruits and sour orange fruit extracts in different in vitro model systems. Bioresource Technol. 99: 4484–4494 (2008)

    Article  CAS  Google Scholar 

  22. Kähkönen MP, Hopia AI, Vuorela HJ, Rauha JP, Pihlaja K, Kujala TS, Heinonen M. Antioxidant activity of plant extracts containing phenolic compounds. J. Agr. Food Chem. 47: 3954–3962 (1999)

    Article  Google Scholar 

  23. Oliveira AC, Valentim IB, Silva CA, Bechara EJH, Barros MP, Mano CM, Goulart MOF. Total phenolic content and free radical scavenging activities of methanolic extract powders of tropical fruit residues. Food Chem. 115: 469–475 (2009)

    Article  Google Scholar 

  24. Pervaiz S, Clement M. Superoxide anion: Oncogenic reactive oxygen species? Int. J. Biochem. Cell B. 39: 1297–1304 (2007)

    Article  CAS  Google Scholar 

  25. Kimmick GG, Bell RA, Bostock RM. Vitamin E and breast cancer: A review. Nutr Cancer 27: 109–117 (1997)

    Article  CAS  Google Scholar 

  26. Ljubuncic P, Portnaya I, Cogan U, Azaizeh H, Bomzon A. Antioxidant activity of Crataegus aronia aqueous extract used in traditional Arab medicine in Israel. J. Ethnopharmacol. 101: 153–161 (2005)

    Article  Google Scholar 

  27. Duh PD, Yen GC. Antioxidative activity of three herbal water extracts. Food Chem. 60: 639–645 (1997)

    Article  CAS  Google Scholar 

  28. Yuan YV, Bone DE, Carrington MF. Antioxidant activity of dulse (Palmaria palmata) extract evaluated in vitro. Food Chem. 91: 485–494 (2005)

    Article  CAS  Google Scholar 

  29. Duh PD. Antioxidant activity of burdock (Arctium lappa Linne): Its scavenging effect on free radical and active oxygen. J. Am. Oil Chem. Soc. 75: 455–461 (1998)

    Article  CAS  Google Scholar 

  30. Gordon MH. The mechanism of antioxidant action in vitro. pp. 1–18. In: Food Antioxidants. Hudson BJF (ed). Elsevier, London, UK (1990)

    Google Scholar 

  31. Yen GC, Chen HY. Antioxidant activity of various tea extracts in relation to their antimutagenicity. J. Agr. Food Chem. 43: 27–32 (1995)

    Article  CAS  Google Scholar 

  32. Rowe LA, Degtyareva N, Doetsch PW. DNA damage-induced reactive oxygen species (ROS) stress response in Saccharomyces cerevisiae. Free Radical Bio. Med. 45: 1167–1177 (2008)

    Article  CAS  Google Scholar 

  33. Evert BA, Salmon TB, Song B, Jingjing L, Siede W, Doetsch PW. Spontaneous DNA damage in Saccharomyces cerevisiae elicits phenotypic properties similar to cancer cells. J. Biol. Chem. 279: 22585–22594 (2004)

    Article  CAS  Google Scholar 

  34. Salmon TB, Evert BA, Song B, Doetsch PW. Biological consequences of oxidative stress-induced DNA damage in Saccharomyces cerevisiae. Nucleic Acids Res. 32: 3712–3723 (2004)

    Article  CAS  Google Scholar 

  35. Je JY, Ahn CB, Oh MJ, Kang SY. Antioxidant activity of a red seaweed Polysiphonia morrowii extract. Food Sci. Biotechnol. 18: 124–129 (2009)

    Google Scholar 

  36. Cozzi R, Ricordy R, Aglitti T, Gatta V, Perticone P, De Salvia R. Ascorbic acid and beta-carotene as modulators of oxidative damage. Carcinogenesis 18: 223–228 (1997)

    Article  CAS  Google Scholar 

  37. Pawel J, Tomase HZ, Jan S, Miral D, Ryszar O. Oxidative DNA base damage and antioxidant enzyme activities in human lung cancer. FEBS Lett. 341: 59–64 (1994)

    Article  Google Scholar 

  38. McCue P, Kwon YI, Shetty K. Anti-diabetic and anti-hypertensive potential of sprouted and solid-state bioprocessed soybean. Asia Pac. J. Clin. Nutr. 14: 145–152 (2005)

    CAS  Google Scholar 

  39. Houstis N, Rosen ED, Lander ES. Reactive oxygen species have a causal role in multiple forms of insulin resistance. Nature 440: 944–948 (2006)

    Article  CAS  Google Scholar 

  40. Chiba S. Molecular mechanism in α-glucosidase and glucoamylase. Biosci. Biotech. Bioch. 61: 1233–1239 (1997)

    Article  CAS  Google Scholar 

  41. Saha K, Lajis NH, Israf DA, Hamzah AS, Khozirah S, Khamis S, Syahida A. Evaluation of antioxidant and nitric oxide inhibitory activities of selected Malaysian medicinal plants. J. Ethnopharmacol. 92: 263–267 (2004)

    Article  CAS  Google Scholar 

  42. Heiss E, Herhaus C, Klimo K, Bartsch H, Gerhauser C. Nuclear factor κB is a molecular target for sulforaphane-mediated antiinammatory mechanisms. J. Biol. Chem. 276: 32008–32015 (2001)

    Article  CAS  Google Scholar 

  43. Liu P, Yang B, Kallio H. Characterization of phenolic compounds in Chinese hawthorn (Crataegus pinnatifida Bge. var. major) fruit by high performance liquid chromatography-electrospray ionization mass spectrometry. Food Chem. 121: 1188–1197 (2010)

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Myeong-Hyeon Wang.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Li, C., Son, H.J., Huang, C. et al. Comparison of Crataegus pinnatifida Bunge var. typica Schneider and C. pinnatifida Bunge fruits for antioxidant, anti-α-glucosidase, and anti-inflammatory activities. Food Sci Biotechnol 19, 769–775 (2010). https://doi.org/10.1007/s10068-010-0108-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10068-010-0108-9

Keywords

Navigation