Skip to main content

Advertisement

Log in

A novel missense compound heterozygous variant in TLR1 gene is associated with susceptibility to rheumatoid arthritis — structural perspective and functional annotations

  • Original Article
  • Published:
Clinical Rheumatology Aims and scope Submit manuscript

Abstract

Introduction

Besides human leukocyte antigen (HLA-DRB1) locus, more than 100 loci across the genome have been identified and linked with the onset, expression and/or progression of rheumatoid arthritis (RA). However, there are still grey areas in our understanding of the key genetic contributors of the disease, particularly in familial cases.

Methods

In the present study, we have performed the whole exome sequencing (WES) of RA patients from two consanguineous families of Pakistan in a quest to identify novel, high-impact, RA-susceptibility genetic variants.

Results

Through stepwise filtering, around 17,000 variants (common in the affected members) were recognized, out of which 2651 were predicted to be deleterious. Of these, 196 had direct relevance to RA. When selected for homozygous recessive mode of inheritance, two novel pathogenic variants (c.1324T>C, p.Cys442→Arg442; c.2036T>C, p.Ile679→Thr679) in the TLR1 gene displayed the role of compound heterozygosity in modulating the phenotypic expression and penetrance of RA. The structural and functional consequences of the TLR1 missense single nucleotide mutations (Cys442→Arg442; Ile679→Thr679) were evaluated through molecular dynamic simulation (MDS) studies. Analysis showed domain’s rigidification, conferring stability to mutant TLR1-TIR/TIRAP-TIR complex with concomitant increase in molecular interactions with pro-inflammatory cytokines, compared to the wild-type conformation. Gene co-expression network analysis highlighted interlinked partnering genes along with interleukin-6 production of TLR1 (corrected p-value 2.98e-4) and acetylcholine receptor activity of CHRNG (corrected p-value 6.12e-2) as highly enriched associated functions.

Conclusion

The results, validated through case-control study subjects, suggested that the variants identified through WES and confirmed through Sanger sequencing and MDS are the novel disease variants and are likely to confer RA-susceptibility, independently and/or in a family-specific context.

Key Points

Exploration of population based/ethno-specific big data is imperative to identify novel causal variants of RA.

Two new deleterious missense mutations in mutational hotspot exon 4 of TLR1 gene have been identified in Pakistani RA patients.

MD simulation data provides evidence for domain’s rigidification, conferring stability to mutant TLR1-TIR/TIRAP-TIR complex, with concomitant increase in production of pro-inflammatory cytokines, thus adding to the onset/erosive outcome of RA.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Data availability

The data of TLR1 and CHRNG SNVs has been submitted to ClinVar database and bear the Accession Nos. SCV001441521 (TLR1 mutant NM_003263.3:c.2036T>C), SCV001441522 (TLR1 mutant NM_003263.3:c.1324T>C) and SCV001441520 (CHRNG mutant, NM_005199.4:c.994C>), respectively.

References

  1. McInnes IB, Schett G (2011) The pathogenesis of rheumatoid arthritis. N Engl J Med 365:2205–2219. https://doi.org/10.1056/NEJMra1004965

    Article  CAS  PubMed  Google Scholar 

  2. Nisar H, Pasha U, Mirza MU, Abid R, Hanif K, Kadarmideen HN, Sadaf S (2021) Impact of IL-17F 7488T/C functional polymorphism on progressive rheumatoid arthritis: novel insight from the molecular dynamic simulations. Immunol Invest. 50:416–426

    Article  CAS  PubMed  Google Scholar 

  3. Farooqi A, Gibson T (1998) Prevalence of the major rheumatic disorders in the adult population of north Pakistan. Br J Rheumatol 37:491–495. https://doi.org/10.1093/rheumatology/37.5.491

    Article  CAS  PubMed  Google Scholar 

  4. Perricone C, Ceccarelli F, Valesini G (2011) An overview on the genetic of rheumatoid arthritis: a never-ending story. Autoimmun Rev 10:599–608. https://doi.org/10.1016/j.autrev.2011.04.021

    Article  CAS  PubMed  Google Scholar 

  5. Holoshitz J (2010) The rheumatoid arthritis HLA-DRB1 shared epitope. Curr Opin Rheumatol 22:293. https://doi.org/10.1097/BOR.0b013e328336ba63

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Choi M, Scholl UI, Ji W, Liu T, Tikhonova IR, Zumbo P, Nayir A, Bakkaloğlu AI, Özen S, Sanjad S (2009) Genetic diagnosis by whole exome capture and massively parallel DNA sequencing. PNAS 106:19096–19101. https://doi.org/10.1073/pnas.0910672106

    Article  PubMed  PubMed Central  Google Scholar 

  7. Akira S, Uematsu S, Takeuchi O (2006) Pathogen recognition and innate immunity. Cell 124:783–801

    Article  CAS  PubMed  Google Scholar 

  8. Cheng K, Gao M, Godfroy JI, Brown PN, Kastelowitz N, Yin H (2015) Specific activation of the TLR1-TLR2 heterodimer by small-molecule agonists. Sci Adv 1:e1400139. https://doi.org/10.1126/sciadv.1400139

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Iwahashi M, Yamamura M, Aita T, Okamoto A, Ueno A, Ogawa N, Akashi S, Miyake K, Godowski PJ, Makino H (2004) Expression of toll-like receptor 2 on CD16+ blood monocytes and synovial tissue macrophages in rheumatoid arthritis. Arthritis Rheum 50:1457–1467. https://doi.org/10.1002/art.20219

    Article  CAS  PubMed  Google Scholar 

  10. Li H, Durbin R (2010) Fast and accurate long-read alignment with Burrows–Wheeler transform. Bioinformatics 26:589–595. https://doi.org/10.1093/bioinformatics/btp698

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Alkan C, Coe BP, Eichler EE (2011) Genome structural variation discovery and genotyping. Nat Rev Genet 12:363–376. https://doi.org/10.1038/nrg2958

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Cingolani P, Platts A, Wang LL, Coon M, Nguyen T, Wang L, Land SJ, Lu X, Ruden DM (2012) A program for annotating and predicting the effects of single nucleotide polymorphisms, SNPeff: SNPs in the genome of drosophila melanogaster strain w1118; iso-2; iso-3. Fly 6:80–92. https://doi.org/10.4161/fly.19695

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. McLaren W, Gil L, Hunt SE, Riat HS, Ritchie GR, Thormann A, Flicek P, Cunningham F (2016) The ENSEMBL variant effect predictor. Genome Biol 17:1–14. https://doi.org/10.1186/s13059-016-0974-4

    Article  CAS  Google Scholar 

  14. Montojo J, Zuberi K, Rodriguez H, Kazi F, Wright G, Donaldson SL, Morris Q, Bader GD (2010) Genemania cytoscape plugin: fast gene function predictions on the desktop. Bioinformatics 26:2927–2928. https://doi.org/10.1093/bioinformatics/btq562

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Greene CS, Krishnan A, Wong AK, Ricciotti E, Zelaya RA, Himmelstein DS, Zhang R, Hartmann BM, Zaslavsky E, Sealfon SC (2015) Understanding multicellular function and disease with human tissue-specific networks. Nat Genet 47:569–576

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Supek F, Bošnjak M, Škunca N, Šmuc T (2011) Revigo summarizes and visualizes long lists of gene ontology terms. PLoS One 6:e21800. https://doi.org/10.1371/journal.pone.0021800

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Goh FG, Midwood KS (2012) Intrinsic danger: activation of toll-like receptors in rheumatoid arthritis. Rheumatology. 51:7–23. https://doi.org/10.1093/rheumatology/ker257

    Article  CAS  PubMed  Google Scholar 

  18. O'Neill LA, Bowie AG (2007) The family of five: TIR-domain-containing adaptors in Toll-like receptor signaling. Nat Rev Immunol 7(5):353–364. https://doi.org/10.1038/nri2079

    Article  CAS  PubMed  Google Scholar 

  19. Jang TH, Park HH (2014) Crystal structure of TIR domain of TLR6 reveals novel dimeric interface of TIR–TIR interaction for toll-like receptor signaling pathway. J Mol Biol 426:3305–3313. https://doi.org/10.1016/j.jmb.2014.07.024

    Article  CAS  PubMed  Google Scholar 

  20. Mineev KS, Goncharuk SA, Goncharuk MV, Volynsky PE, Novikova EV, Aresinev AS (2017) Spatial structure of TLR4 transmembrane domain in bicelles provides the insight into the receptor activation mechanism. Sci Rep 7:1–12. https://doi.org/10.1038/s41598-017-07250-4

    Article  CAS  Google Scholar 

  21. Mineev KS, Goncharuk SA, Arseniev AS (2014) Toll-like receptor 3 transmembrane domain is able to perform various homotypic interactions: an NMR structural study. FEBS Lett 588:3802–3807. https://doi.org/10.1016/j.febslet.2014.08.031

    Article  CAS  PubMed  Google Scholar 

  22. Schwede T, Kopp J, Guex N, Peitsch MC (2003) Swiss-model: an automated protein homology-modeling server. Nucleic Acids Res 31:3381–3385. https://doi.org/10.1093/nar/gkg520

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Case DA, Babin V, Berryman J, Betz R, Cai Q, Cerutti D, Cheatham Iii T, Darden T, Duke R, Gohlke HE (2014) Amber 14

  24. Eswar N, Webb B, Marti-Renom MA, Madhusudhan M, Eramian D, Shen MY, Pieper U, Sali A (2006) Comparative protein structure modeling using modeller. Curr Protoc Bioinformatics 15:5.6. 1–5.6. 30

    Article  Google Scholar 

  25. Fiser A, Sali A (2003) Modloop: automated modeling of loops in protein structures. Bioinform 19:2500–2501

    Article  CAS  Google Scholar 

  26. Frappier V, Chartier M, Najmanovich RJ (2015) Encom server: exploring protein conformational space and the effect of mutations on protein function and stability. Nucleic Acids Res 43:W395–W400

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Chen C-J, Kono H, Golenbock D, Reed G, Akira S, Rock KL (2007) Identification of a key pathway required for the sterile inflammatory response triggered by dying cells. Nat Med 13:851–856

    Article  CAS  PubMed  Google Scholar 

  28. Bovijn C, Ulrichts P, De Smet A-S, Catteeuw D, Beyaert R, Tavernier J, Peelman F (2012) Identification of interaction sites for dimerization and adapter recruitment in toll/interleukin-1 receptor (TIR) domain of toll-like receptor 4. J Biol Chem 287:4088–4098

    Article  CAS  PubMed  Google Scholar 

  29. Guven-Maiorov E, Keskin O, Gursoy A, VanWaes C, Chen Z, Tsai C-J, Nussinov R (2015) The architecture of the TIR domain signalosome in the toll-like receptor-4 signaling pathway. Sci Rep 5:1–13

    Article  Google Scholar 

  30. Comeau SR, Gatchell DW, Vajda S, Camacho CJ (2004) Cluspro: a fully automated algorithm for protein–protein docking. Nucleic Acids Res 32:W96–W99

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Roe DR, Cheatham TE III (2013) Ptraj and cpptraj: software for processing and analysis of molecular dynamics trajectory data. J Chem Theory Comput 9:3084–3095

    Article  CAS  PubMed  Google Scholar 

  32. Botos I, Segal DM, Davies DR (2011) The structural biology of toll-like receptors. Structure 19:447–459. https://doi.org/10.1126/sciadv.1400139

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Park JH, Wacholder S, Gail MH, Peters U, Jacobs KB, Chanock SJ, Chatterjee N (2010) Estimation of effect size distribution from genome-wide association studies and implications for future discoveries. Nat Genet 42:570–575. https://doi.org/10.1038/ng.610

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Cirulli ET, Goldstein DB (2010) Uncovering the roles of rare variants in common disease through whole-genome sequencing. Nat Rev Genet 11:415–425

    Article  CAS  PubMed  Google Scholar 

  35. Cohen JC, Boerwinkle E, Mosley TH Jr, Hobbs HH (2006) Sequence variations in PCSK9, low IDL, and protection against coronary heart disease. N Engl J Med 354:1264–1272. https://doi.org/10.1056/NEJMoa054013

    Article  CAS  PubMed  Google Scholar 

  36. Nejentsev S, Walker N, Riches D, Egholm M, Todd JA (2009) Rare variants of IFIH1, a gene implicated in antiviral responses, protect against type 1 diabetes. Science 324:387–389. https://doi.org/10.1126/science.1167728

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Raychaudhuri S, Iartchouk O, Chin K, Tan PL, Tai AK, Ripke S, Gowrisankar S, Vemuri S, Montgomery K, Yu Y (2011) A rare penetrant mutation in CFH confers high risk of age-related macular degeneration. Nat Genet 43:1232–1236. https://doi.org/10.1038/ng.976

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Leblond CS, Heinrich J, Delorme R, Proepper C, Betancur C, Huguet G, Konyukh M, Chaste P, Ey E, Rastam M (2012) Genetic and functional analyses of shank2 mutations suggest a multiple hit model of autism spectrum disorders. PLoS Genet 8:e1002521. https://doi.org/10.1371/journal.pgen.1002521

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Jordan CT, Cao L, Roberson ED, Duan S, Helms CA, Nair RP, Duffin KC, Stuart PE, Goldgar D, Hayashi G (2012) Rare and common variants in card14, encoding an epidermal regulator of NF-kappa B, in psoriasis. Am J Hum Genet 90:796–808. https://doi.org/10.1016/j.ajhg.2012.03.013

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Kurkó J, Besenyei T, Laki J, Glant TT, Mikecz K, Szekanecz Z (2013) Genetics of rheumatoid arthritis—a comprehensive review. Clin Rev Allergy Immunol 45:170–179. https://doi.org/10.1007/s12016-012-8346-7

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Gay NJ, Keith FJ (1991) Drosophila toll and il-1 receptor. Nature 351:355–356

    Article  CAS  PubMed  Google Scholar 

  42. Honda K, Yanai H, Mizutani T, Negishi H, Shimada N, Suzuki N, Ohba Y, Takaoka A, Yeh W-C, Taniguchi T (2004) Role of a transductional-transcriptional processor complex involving myd88 and irf-7 in toll-like receptor signaling. PNAS 101:15416–15421

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Barreiro LB, Ben-Ali M, Quach H, Laval G, Patin E, Pickrell JK, Bouchier C, Tichit M, Neyrolles O, Gicquel B (2009) Evolutionary dynamics of human toll-like receptors and their different contributions to host defense. PLoS Genet 5:e1000562. https://doi.org/10.1371/journal.pgen.1000562

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Ben-Ali M, Corre B, Manry J, Barreiro LB, Quach H, Boniotto M, Pellegrini S, Quintana-Murci L (2011) Functional characterization of naturally occurring genetic variants in the human TLR1-2-6 gene family. Hum Mutat 32:643–652

    Article  CAS  PubMed  Google Scholar 

  45. Johnson CM, Lyle EA, Omueti KO, Stepensky VA, Yegin O, Alpsoy E, Hamann L, Schumann RR, Tapping RI (2007) Cutting edge: a common polymorphism impairs cell surface trafficking and functional responses of TLR1 but protects against leprosy. J Immunol 178:7520–7524. https://doi.org/10.1016/j.ajhg.2012.03.013

    Article  CAS  PubMed  Google Scholar 

  46. Hawn TR, Misch EA, Dunstan SJ, Thwaites GE, Lan NT, Quy HT, Chau TT, Rodrigues S, Nachman A, Janer M (2007) A common human TLR1 polymorphism regulates the innate immune response to lipopeptides. Eur J Immunol 37:2280–2289. https://doi.org/10.1002/eji.200737034

    Article  CAS  PubMed  Google Scholar 

  47. Omueti KO, Mazur DJ, Thompson KS, Lyle EA, Tapping RI (2007) The polymorphism p315l of human toll-like receptor 1 impairs innate immune sensing of microbial cell wall components. J Immunol 178:6387–6394. https://doi.org/10.4049/jimmunol.178.10.6387

    Article  CAS  PubMed  Google Scholar 

  48. Angelo H, Gomes Silva I, Oliveira R, Louzada-Júnior P, Donadi E, Crovella S, Maia M, de Souza P, Sandrin-Garcia P (2015) Interleukin-18, interleukin-12b and interferon-γ gene polymorphisms in Brazilian patients with rheumatoid arthritis: a pilot study. Tissue Antigens 86:276–278

    Article  CAS  PubMed  Google Scholar 

  49. Thwaites RS, Unterberger S, Chamberlain G, Walker-Bone K, Davies KA, Sacre S (2020) TLR1/2 and 5 induce elevated cytokine levels from rheumatoid arthritis monocytes independent of ACPA or RF autoantibody status. Rheumatology 59:3533–3539

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Jones SA (2005) Directing transition from innate to acquired immunity: defining a role for IL-6. J Immunol 175:3463–3468

    Article  CAS  PubMed  Google Scholar 

  51. Kragstrup TW, Andersen T, Heftdal LD, Hvid M, Gerwien J, Sivakumar P, Taylor PC, Senolt L, Deleuran B (2018) The IL-20 cytokine family in rheumatoid arthritis and spondyloarthritis. Front Immunol 9:2226

    Article  PubMed  PubMed Central  Google Scholar 

  52. Christensen PB, Jensen T, Tsiropoulos I, Sorensen T, Kjaer M, Højer-Pedersen E, Rasmussen M, Lehfeldt E (1995) Associated autoimmune diseases in myasthenia gravis a population-based study. Acta Neurol Scand 91:192–195. https://doi.org/10.1111/j.1600-0404.1995.tb00432.x

    Article  CAS  PubMed  Google Scholar 

  53. Giraud M, Eymard B, Tranchant C, Gajdos P, Garchon H (2004) Association of the gene encoding the δ-subunit of the muscle acetylcholine receptor (CHRND) with acquired autoimmune myasthenia gravis. Genes Immun 5:80–83. https://doi.org/10.1038/sj.gene.6364041

    Article  CAS  PubMed  Google Scholar 

  54. Heckmann JM, Morrison KE, Emeryk-Szajewska B, Strugalska H, Bergoffen J, Willcox N, Newsom-Davis J (1996) Human muscle acetylcholine receptor alpha-subunit gene (CHRNA1) association with autoimmune myasthenia gravis in black, mixed-ancestry and Caucasian subjects. J Autoimmun 9:175–180. https://doi.org/10.1006/jaut.1996.0021

    Article  CAS  PubMed  Google Scholar 

  55. Kariminejad A, Almadani N, Khoshaeen A, Olsson B, Moslemi AR, Tajsharghi H (2016) Truncating CHRNG mutations associated with interfamilial variability of the severity of the Escobar variant of multiple pterygium syndrome. BMC Genet 17:71. https://doi.org/10.1186/s12863-016-0382-5

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Vogt J, Morgan NV, Rehal P, Faivre L, Brueton LA et al (2012) CHRNG genotype-phenotype correlations in the multiple pterygium syndromes. J Med Genet 49(1):21–26. https://doi.org/10.1136/jmedgenet-2011-100378

    Article  CAS  PubMed  Google Scholar 

  57. Morgan NV, Brueton LA, Cox P, Greally MT, Tolmie J et al (2006) Mutations in the embryonal subunit of the acetylcholine receptor (CHRNG) cause lethal and Escobar variants of multiple pterygium syndrome. Am J Hum Genet 79(2):390–395

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

This study was supported by NRPU grant (8488/2017) from the Higher Education Commission (HEC), Government of Pakistan. Authors are especially thankful to the RA patients, volunteers and their families, and the doctors and paramedical staff of Rheumatology Department, Sheikh Zayed Hospital, Lahore, Pakistan for their full cooperation and assistance in collection of blood samples. The authors acknowledge the support and guidance extended by Dr. Xiao Wang and Prof. Haja N. Kadermideen (Department of Applied Mathematics and Computer Science, Technical University of Denmark, Kongens Lyngby, Denmark) in WES data analyses.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Saima Sadaf.

Ethics declarations

Disclosures

None.

Informed consent

Written informed consent has been obtained from the patient(s) enrolled in this study to publish the research findings.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

ESM 1

(DOCX 282 kb)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pasha, U., Hanif, K., Nisar, H. et al. A novel missense compound heterozygous variant in TLR1 gene is associated with susceptibility to rheumatoid arthritis — structural perspective and functional annotations. Clin Rheumatol 42, 3097–3111 (2023). https://doi.org/10.1007/s10067-023-06702-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10067-023-06702-9

Keywords

Navigation