Skip to main content

Advertisement

Log in

The composition and function profile of the gut microbiota of patients with primary Sjögren’s syndrome

  • Original Article
  • Published:
Clinical Rheumatology Aims and scope Submit manuscript

Abstract

Objectives

This healthy volunteer control-based study was conducted to explore alterations of compositions and function of gut microbiota in Chinese pSS patients.

Method

The high-throughput Illumina Miseq sequencing method, targeting the V3-V4 region of the 16S ribosomal RNA (rRNA) gene, was used to compare the microbiota communities between 30 pSS patients and 30 age-matched healthy volunteers. The intestinal dysbiosis of pSS patients was evaluated and its correlation with some disease phenotypes was analyzed. Furthermore, we performed the amino acid sequence alignment analysis to illustrate the molecular mimicry patterns of new microbial peptides.

Results

Compared with that in healthy controls, the composition and function of the gut microbiota significantly differed in pSS patients. Certain genera and species, including genera: Escherichia-Shigella, Sardovia, Veillonella, Insteinimonas, and Lactobacillales; species: Escherichia coli, Lactobacillus phage Sal3, Lactobacillus reuteri, Lactobacillus gasseri, Streptococcus lutetiensis, Streptococcus mutans, Scardovia wiggsiae, and Fusobacterrium ulcerans were found to be enriched in the feces of pSS patients, while butyrate-producing bacteria were less abundant in pSS patients. Certain genera (including Lactobacillales) and species (including Lactobacillus gasseri) were associated with disease severity and therapy resistance parameters. Autoantigen epitopes of “WPSALPT, NPARSFG, MNPARSFG, and AFGLAIGT” from aquaporin-5 were aligned perfectly with one enriched microbiota of patients with pSS, namely Escherichia coli.

Conclusions

The composition and function of the gut microbiota significantly differed in pSS patients compared with that in healthy controls. Our study would facilitate the possible research on the role of gut microbiota in the pathogenesis of pSS.

Key Points

• The composition and function of the gut microbiota significantly differed in pSS patients compared with that in healthy controls.

• Certain genera (including Lactobacillales) and species (including Lactobacillus gasseri) were associated with disease severity and therapy resistance parameters.

• The amino acid sequence of Escherichia coli, an enriched species in pSS patients, is similar to those of the pSS-relevant auto-epitopes, such as WPSALPT, NPARSFG, MNPARSFG, and AFGLAIGT, which provides us new clues to explore the exact mechanisms by which Escherichia coli contributes to pSS pathogenesis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Abbreviations

pSS:

Primary Sjögren’s syndrome

Treg:

FoxP3 + regulatory T cells

SPF:

Specific pathogens

GF:

Germ-free

SCFA:

Short-chain fatty acids

ACR-EULAR:

American Congress of Rheumatology–European League Against Rheumatism

ESSDAI:

EULAR Sjögren’s syndrome disease activity index

IgG:

Immunoglobulin G

IgA:

Immunoglobulin A

IgM:

Immunoglobulin M

Ro/SSA:

Ro/Sjögren’s syndrome autoantibody A

La/SSB:

La/Sjögren’s syndrome autoantibody B

ANA:

Antinuclear antibody

pSS-FC:

PSS with a favourable course

pSS-STR:

Most severe and therapy-resistant pSS

pSS-R:

PSS with therapy-resistant

pSS-NR:

Non-therapy resistant pSS

AGE:

Gel electrophoresis

OTU:

Operational taxonomic units

RDP:

Ribosomal Database Project

PCoA:

Principal coordinate analysis

PICRUSt:

Phylogenetic Investigation of Communities by Reconstruction of Unobserved States

KEGG:

Kyoto Encyclopedia of Genes and Genome

KO:

Orthologics

IEDB:

Immune epitope database

pDCs:

Plasmacytoid dendritic cells

IFN:

Interferon

SLE:

Systemic lupus erythematosus

OmpA:

Outer membrane protein

References

  1. Saraux A, Pers JO, Devauchelle-Pensec V (2016) Treatment of primary Sjogren syndrome. Nat Rev Rheumatol 12(8):456–471

    Article  CAS  PubMed  Google Scholar 

  2. Miossec P, Korn T, Kuchroo VK (2009) Interleukin-17 and type 17 helper T cells. N Engl J Med 361(9):888–898

    Article  CAS  PubMed  Google Scholar 

  3. Nguyen CQ, Hu MH, Li Y, Stewart C, Peck AB (2008) Salivary gland tissue expression of interleukin-23 and interleukin-17 in Sjogren’s syndrome: findings in humans and mice. Arthritis Rheum 58(3):734–743. https://doi.org/10.1002/art.23214

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Manfrè V, Cafaro G, Riccucci I, Zabotti A, Perricone C, Bootsma H, De Vita S, Bartoloni E (2020) One year in review 2020: comorbidities diagnosis and treatment of primarySjogren’s syndrome.Clin Exp Rheumatol 38 Suppl 126(4):10–22

  5. Björk A, Mofors J, Wahren-Herlenius M (2020) Environmental factors in the pathogenesis of primary Sjogren’s syndrome. J Intern Med 287(5):475–492

    Article  PubMed  Google Scholar 

  6. Atarashi K, Tanoue T, Shima T et al (2011) Induction of colonic regulatory T cells by indigenousClostridium species [J]. Science 331:337–341

    Article  CAS  PubMed  Google Scholar 

  7. Cheng H, Guan X, Chen D, Ma W (2019) The Th17/Treg Cell balance: a gut microbiota-modulated story. Microorganisms 7(12):583

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Flannigan KL, Denning TL (2018) Segmented filamentous bacteria-induced immune responses: a balancing act between host protection and autoimmunity. Immunology 154(4):537–546

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Xu M, Pokrovskii M, Ding Y, Yi R, Au C, Harrison OJ, Galan C, Belkaid Y, BonneauR Littman DR (2018) c-MAF-dependent regulatory T cells mediate immunological tolerance to a gut pathobiont. Nature 554(7692):373–377

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Gao Y, Chen Y, Zhang Z, Yu X, Zheng J (2020) Recent advances in mouse models of Sjögren’s syndrome. Front Immunol 11:1158

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Vitali C, Bombardieri S, Jonsson R et al (2002) Classification criteria for Sjogren s syndrome: a revised version of the European criteria proposed by theAmerican-European Consensus Group. Ann Rheum Dis 61:554–558

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Seror R, Ravaud P, Bowman SJ et al (2010) EULAR Sjogrens syndrome disease activity index: development of a consensus systemic disease activity index for primary Sjogren’s syndrome. Ann Rheum Dis 69:1103–1109

    Article  PubMed  Google Scholar 

  13. Qian Y, Yang X, Shaoqing Xu, Chunyan Wu, Song Y, Qin N, Chen S-D, Xiao Q (2018) “Alteration of the fecal microbiota in Chinese patients with Parkinson’s disease”, brain, behavior, and immunity. Brain Behav Immun 70:194–202

    Article  PubMed  Google Scholar 

  14. Edga R (2013) UPARSE: highly accurate OTU sequences from microbial amplicon reads. Nat Methods 10(10):996–8

    Article  Google Scholar 

  15. Yilmaz P, Parfrey LW, Yarza P, Gerken J, Pruesse E, Quast C, Schweer T, Peplies J, Ludwig W, Glöckner FO (2014) The SILVA and “All-species Living Tree Project (LTP)” taxonomic frameworks. Nucleic Acids Res 42(Database issue):D643-8

    Article  CAS  PubMed  Google Scholar 

  16. Altschul SF, Gish W, Miller W, Myers EW, Lipman DJ (1990) Basic local alignment search tool. J Mol Biol 215(3):403–410

    Article  CAS  PubMed  Google Scholar 

  17. Caporaso JG, Kuczynski J, Stombaugh J, Bittinger K, Bushman FD, Costello EK, Fierer N, Peña AG, Goodrich JK, Gordon JI, Huttley GA, Kelley ST, Knights D, Koenig JE, Ley RE, Lozupone CA, McDonald D, Muegge BD, Pirrung M, Reeder J, Sevinsky JR, Turnbaugh PJ, Walters WA, Widmann J, Yatsunenko T, Zaneveld J, Knight R (2010) QIIME allows analysis of high-throughput community sequencing data. Nat Methods 7(5):335–6

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Altschul SF, Gish W, Miller W, Myers EW, Lipman DJ (1990) Basic local alignment search tool. J Mol Biol 215(3):403–410

    Article  CAS  PubMed  Google Scholar 

  19. de Paiva CS, Jones DB, Stern ME, Bian F, Moore QL, Corbiere S, Streckfus CF, Hutchinson DS, Ajami NJ, Petrosino JF, Pflugfelder SC (2016) Altered mucosal microbiome diversity and disease severity in Sjögren syndrome. Sci Rep 6:23561

    Article  PubMed  PubMed Central  Google Scholar 

  20. Cano-Ortiz A, Laborda-Illanes A, Plaza-Andrades I, Membrillo Del Pozo A, Villarrubia Cuadrado A, de Rodríguez Calvo Mora M, Leiva-Gea I, Sanchez-Alcoholado L, Queipo-Ortuño MI (2020) Connection between the gut microbiome, systemic inflammation, gut permeability and FOXP3 expression in patients with primary Sjögren’s syndrome. Int J Mol Sci 21(22):8733

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Zegarra-Ruiz DF, El Beidaq A, Iñiguez AJ, Lubrano Di Ricco M, Manfredo Vieira S, Ruff WE, Mubiru D, Fine RL, Sterpka J, Greiling TM, Dehner C, Kriegel MA (2019) A diet-sensitive commensal lactobacillus strain mediates TLR7-dependent systemic autoimmunity. Cell Host Microbe 25(1):113–127

    Article  CAS  PubMed  Google Scholar 

  22. Xu X, Hicks C, Li Y, Su J, Shiloach J, Kaufman JB, Fitz Y, Eichacker PQ, Cui X (2014) Purified cell wall from the probiotic bacterium Lactobacillus gasseri activates systemic inflammation and at higher doses, produces lethality in a rat model. Crit Care 18(4):R140

    Article  PubMed  PubMed Central  Google Scholar 

  23. Tochio T, Kadota Y, Tanaka T, Koga Y (2018) 1-Kestose, the smallest fructooligosaccharide component, which efficiently stimulates Faecalibacterium prausnitzii as well as bifidobacteria in humans. Foods 7(9):140

    Article  PubMed  PubMed Central  Google Scholar 

  24. Zhao H, Xu H, Chen S, He J, Zhou Y, Nie Y (2021) Systematic review and meta-analysis of the role of Faecalibacterium prausnitzii alteration in inflammatory bowel disease. J Gastroenterol Hepatol 6(2):320–328

  25. Hiippala K, Barreto G, Burrello C, Diaz-Basabe A, Suutarinen M, Kainulainen V, Bowers JR, Lemmer D, Engelthaler DM, Eklund KK, Facciotti F, Satokari R (2020) Novel Odoribacter splanchnicus Strain and its outer membrane vesicles exert immunoregulatory effects in vitro. Front Microbiol 11:575455

    Article  PubMed  PubMed Central  Google Scholar 

  26. Nylund L, Nermes M, Isolauri E, Salminen S, de Vos WM, Satokari R (2015Feb) Severity of atopic disease inversely correlates with intestinal microbiota diversity and butyrate-producing bacteria. Allergy 70(2):241–244

    Article  CAS  PubMed  Google Scholar 

  27. Yanagisawa N, Ueshiba H, Abe Y, Kato H, Higuchi T, Yagi J (2018) Outer membrane protein of gut commensal microorganism induces autoantibody production and extra-intestinal gland inflammation in mice. Int J Mol Sci 19(10):3241

    Article  PubMed  PubMed Central  Google Scholar 

  28. Winter SE, Winter MG, Xavier MN, Thiennimitr P, Poon V, Keestra AM, Laughlin RC, Gomez G, Wu J, Lawhon SD, Popova IE, Parikh SJ, Adams LG, Tsolis RM, Stewart VJ, Bäumler AJ (2013) Host-derived nitrate boosts growth of E coli in the inflamed gut. Science 339(6120):708–11

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Yanagisawa N, Ueshiba H, Abe Y, Kato H, Higuchi T, Yagi J (2018) Outer membrane protein of gut commensal microorganism induces autoantibody production and extra-intestinal gland inflammation in mice. Int J Mol Sci 19(10):3241

    Article  PubMed  PubMed Central  Google Scholar 

  30. Chen BD, Jia XM, Xu JY, Zhao LD, Ji JY, Wu BX, Ma Y, Li H, Zuo XX, Pan WY, Wang XH, Ye S, Tsokos GC, Wang J, Zhang X (2021) An autoimmunogenic and proinflammatory profile defined by the gut microbiota of patients with untreated systemic Lupus Erythematosus. Arthritis Rheumatol 73(2):232–243

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank the patients and healthy volunteers who made this study possible and provided their fecal samples. We thank Professor Yudong Liu from Beijing Hospital for the manuscript editing.

Funding

This work was supported by grants from the Natural Science Foundation of China (31140008), CAMS Innovation Fund for Medical Science (2021-12 M-1–050), and Beijing Hospital fund (BJ2014033).

Author information

Authors and Affiliations

Authors

Contributions

Clinical analyses and manuscript writing: Yongjing Cheng, Zhe Chen.

Sample and data collection: Fang Wang.

Statistical analyses: Yongjing Cheng, Yunzhi Zhufeng, Jun Xu.

Study design:Fang Wang, Yongjing Cheng.

Corresponding author

Correspondence to Yongjing Cheng.

Ethics declarations

Conflict of interest

The authors declare that the research was conducted in the absence of any commercial or financial relationships that could be construed as a potential conflict of interest.

Additional information

Publisher's note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 19 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, F., Zhufeng, Y., Chen, Z. et al. The composition and function profile of the gut microbiota of patients with primary Sjögren’s syndrome. Clin Rheumatol 42, 1315–1326 (2023). https://doi.org/10.1007/s10067-022-06451-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10067-022-06451-1

Keywords

Navigation