Skip to main content
Log in

Corticosteroids combined with doublet or single-agent immunosuppressive therapy for active proliferative lupus nephritis

  • Original Article
  • Published:
Clinical Rheumatology Aims and scope Submit manuscript

Abstract

Objectives

We performed a meta-analysis to assess whether corticosteroids (C) plus (+) doublet immunosuppressive therapy (IT) is superior to the classical combination of C with single-agent IT in active proliferative lupus nephritis (LN).

Method

Randomized trials evaluating the benefits and risks of C+doublet versus single-agent IT in active proliferative LN were obtained by searching PubMed, EMBASE, and Cochrane Central Register. The primary outcome was overall response rate (ORR). The secondary outcomes were the change from baseline in Systemic Lupus Erythematosus Disease Activity Index (SLE-DAI) score, negative conversion ratio of anti-double-stranded DNA (anti-dsDNA), and adverse events. The PROSPERO registry number is CRD42017068491.

Results

Eleven trials with 1855 patients were included. Compared with C+single-agent IT, C+doublet IT had a significantly higher ORR (relative risk [RR], 1.22; 95% confidence interval [CI], 1.09 to 1.35; P < 0.01). In a subgroup analysis, C+doublet IT without biologics had a significantly higher ORR than C+single-agent IT (RR, 1.30; 95% CI, 1.13 to 1.50; P < 0.01), while C+doublet IT including biologics improved ORR only for refractory severe LN (RR, 1.46; 95% CI, 1.09 to 1.96; P = 0.012). A larger change from baseline in SLE-DAI scores (standardized mean difference, − 0.49; 95% CI, − 0.68 to − 0.30; P < 0.01) and a higher negative conversion ratio of anti-dsDNA (RR, 1.34; 95% CI, 1.06 to 1.69; P = 0.014) were observed with C+doublet IT than with C+single-agent IT. The rates of adverse events were similar between the two regimens.

Conclusions

Compared with single-agent IT, the combination of C and doublet IT without biologics improved clinical outcomes in active proliferative LN.

Key Points

Compared with corticosteroids + single-agent immunosuppressive therapy, corticosteroids + doublet immunosuppressive therapy without biologics had a significantly higher overall response rate in active proliferative lupus nephritis.

Compared with corticosteroids + single-agent immunosuppressive therapy, corticosteroids + doublet immunosuppressive therapy including biologics improved overall response rate only for refractory severe lupus nephritis.

A larger change from baseline in SLE-DAI scores and a higher negative conversion ratio of anti-dsDNA were observed with corticosteroids + doublet immunosuppressive therapy than with corticosteroids + single-agent immunosuppressive therapy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Norby GE, Mjoen G, Bjorneklett R, Vikse BE, Holdaas H, Svarstad E, Aasarod K (2017) Outcome in biopsy-proven lupus nephritis: evaluation of biopsies from the Norwegian Kidney Biopsy Registry. Lupus 26:881–885. https://doi.org/10.1177/0961203316686700

    Article  CAS  PubMed  Google Scholar 

  2. Sexton DJ, Reule S, Solid C, Chen SC, Collins AJ, Foley RN (2015) ESRD from lupus nephritis in the United States, 1995-2010. Clin J Am Soc Nephrol 10:251–259. https://doi.org/10.2215/cjn.02350314

    Article  PubMed  Google Scholar 

  3. Chen YE, Korbet SM, Katz RS, Schwartz MM, Lewis EJ (2008) Value of a complete or partial remission in severe lupus nephritis. Clin J Am Soc Nephrol 3:46–53. https://doi.org/10.2215/cjn.03280807

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Tektonidou MG, Dasgupta A, Ward MM (2016) Risk of end-stage renal disease in patients with lupus nephritis, 1971-2015: a systematic review and Bayesian meta-analysis. Arthritis Rheumatol 68:1432–1441. https://doi.org/10.1002/art.39594

    Article  PubMed  PubMed Central  Google Scholar 

  5. Tian SY, Feldman BM, Beyene J, Brown PE, Uleryk EM, Silverman ED (2014) Immunosuppressive therapies for the induction treatment of proliferative lupus nephritis: a systematic review and network metaanalysis. J Rheumatol 41:1998–2007. https://doi.org/10.3899/jrheum.140050

    Article  PubMed  Google Scholar 

  6. Bao H, Liu ZH, Xie HL, Hu WX, Zhang HT, Li LS (2008) Successful treatment of class V+IV lupus nephritis with multitarget therapy. J Am Soc Nephrol 19:2001–2010. https://doi.org/10.1681/asn.2007121272

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Rovin BH, Furie R, Latinis K, Looney RJ, Fervenza FC, Sanchez-Guerrero J, Maciuca R, Zhang D, Garg JP, Brunetta P, Appel G (2012) Efficacy and safety of rituximab in patients with active proliferative lupus nephritis: the lupus nephritis assessment with rituximab study. Arthritis Rheum 64:1215–1226. https://doi.org/10.1002/art.34359

    Article  CAS  PubMed  Google Scholar 

  8. Bertsias GK, Tektonidou M, Amoura Z, Aringer M, Bajema I, Berden JH, Boletis J, Cervera R, Dörner T, Doria A, Ferrario F, Floege J, Houssiau FA, Ioannidis JP, Isenberg DA, Kallenberg CG, Lightstone L, Marks SD, Martini A, Moroni G, Neumann I, Praga M, Schneider M, Starra A, Tesar V, Vasconcelos C, van Vollenhoven R, Zakharova H, Haubitz M, Gordon C, Jayne D, Boumpas DT, European League Against Rheumatism and European Renal Association-European Dialysis and Transplant Association (2012) Joint European League Against Rheumatism and European Renal Association-European Dialysis and Transplant Association (EULAR/ERA-EDTA) recommendations for the management of adult and paediatric lupus nephritis. Ann Rheum Dis 71:1771–1782. https://doi.org/10.1136/annrheumdis-2012-201940

    Article  CAS  PubMed  Google Scholar 

  9. Hahn BH, McMahon MA, Wilkinson A, Wallace WD, Daikh DI, Fitzgerald JD, Karpouzas GA, Merrill JT, Wallace DJ, Yazdany J, Ramsey-Goldman R, Singh K, Khalighi M, Choi SI, Gogia M, Kafaja S, Kamgar M, Lau C, Martin WJ, Parikh S, Peng J, Rastogi A, Chen W, Grossman JM, American College of Rheumatology (2012) American College of Rheumatology guidelines for screening, treatment, and management of lupus nephritis. Arthritis Care Res (Hoboken) 64:797–808. https://doi.org/10.1002/acr.21664

    Article  Google Scholar 

  10. Cattran DC, Feehally J, Cook HT, Liu ZH, Fervenza FC, Mezzano SA, Floege J, Nachman PH, Gipson DS, Praga M (2012) Kidney disease: improving global outcomes (KDIGO) glomerulonephritis work group. KDIGO clinical practice guideline for glomerulonephritis. Kidney Int 2:139–274. https://doi.org/10.1038/kisup.2012.9 URL: https://kdigo.org/guidelines/gn/. Accessed 09 May 2019

  11. Liberati A, Altman DG, Tetzlaff J, Mulrow C, Gøtzsche PC, Ioannidis JPA, Clarke M, Devereaux PJ, Kleijnen J, Moher D (2009) The PRISMA statement for reporting systematic reviews and meta-analyses of studies that evaluate healthcare interventions: explanation and elaboration. BMJ 339:b2700. https://doi.org/10.1136/bmj.b2700

    Article  PubMed  PubMed Central  Google Scholar 

  12. Guyatt GH, Oxman AD, Vist GE, Kunz R, Falck-Ytter Y, Alonso-Coello P, Schunemann HJ (2008) GRADE: an emerging consensus on rating quality of evidence and strength of recommendations. BMJ 336:924–926. https://doi.org/10.1136/bmj.39489.470347.AD

    Article  PubMed  PubMed Central  Google Scholar 

  13. Churg J, Sobin LH (1982) Renal disease: classification and atlas of glomerular diseases. Igaku-Shoin, Tokyo

    Google Scholar 

  14. Weening JJ, D'Agati VD, Schwartz MM, Seshan SV, Alpers CE, Appel GB, Balow JE, Bruijn JA, Cook T, Ferrario F, Fogo AB, Ginzler EM, Hebert L, Hill G, Hill P, Jennette JC, Kong NC, Lesavre P, Lockshin M, Looi LM, Makino H, Moura LA, Nagata M (2004) The classification of glomerulonephritis in systemic lupus erythematosus revisited. J Am Soc Nephrol 15:241–250. https://doi.org/10.1097/01.ASN.0000108969.21691.5D

    Article  PubMed  Google Scholar 

  15. Brok J, Thorlund K, Gluud C, Wetterslev J (2008) Trial sequential analysis reveals insufficient information size and potentially false positive results in many meta-analyses. J Clin Epidemiol 61:763–769. https://doi.org/10.1016/j.jclinepi.2007.10.007

    Article  PubMed  Google Scholar 

  16. Brok J, Thorlund K, Wetterslev J, Gluud C (2009) Apparently conclusive meta-analyses may be inconclusive—trial sequential analysis adjustment of random error risk due to repetitive testing of accumulating data in apparently conclusive neonatal meta-analyses. Int J Epidemiol 38:287–298. https://doi.org/10.1093/ije/dyn188

    Article  PubMed  Google Scholar 

  17. Wetterslev J, Thorlund K, Brok J, Gluud C (2008) Trial sequential analysis may establish when firm evidence is reached in cumulative meta-analysis. J Clin Epidemiol 61:64–75. https://doi.org/10.1016/j.jclinepi.2007.03.013

    Article  PubMed  Google Scholar 

  18. Thorlund K, Devereaux PJ, Wetterslev J, Guyatt G, Ioannidis JP, Thabane L, Gluud LL, Als-Nielsen B, Gluud C (2009) Can trial sequential monitoring boundaries reduce spurious inferences from meta-analyses? Int J Epidemiol 38:276–286. https://doi.org/10.1093/ije/dyn179

    Article  PubMed  Google Scholar 

  19. Thorlund K, Imberger G, Walsh M, Chu R, Gluud C, Wetterslev J, Guyatt G, Devereaux PJ, Thabane L (2011) The number of patients and events required to limit the risk of overestimation of intervention effects in meta-analysis—a simulation study. PLoS One 6:e25491. https://doi.org/10.1371/journal.pone.0025491

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Thorlund K, Engstrøm J, Wetterslev J, Brok J, Imberger G, Gluud C (2011) User manual for trial sequential analysis (TSA). Copenhagen Trial Unit, Centre for Clinical Intervention Research, Copenhagen, Denmark URL: http://www.ctu.dk/tsa/downloads.aspx. Accessed 09 May 2019

  21. Higgins JP, Thompson SG, Deeks JJ, Altman DG (2003) Measuring inconsistency in meta-analyses. BMJ 327:557–560. https://doi.org/10.1136/bmj.327.7414.557

    Article  PubMed  PubMed Central  Google Scholar 

  22. Copas JB, Shi JQ (2001) A sensitivity analysis for publication bias in systematic reviews. Stat Methods Med Res 10:251–265. https://doi.org/10.1177/096228020101000402

    Article  CAS  PubMed  Google Scholar 

  23. Egger M, Smith G, Schneider M, Minder C (1997) Bias in meta-analysis detected by a simple, graphical test. BMJ 315:629–634. https://doi.org/10.1136/bmj.315.7109.629

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Begg CB, Mazumdar M (1994) Operating characteristics of a rank correlation test for publication bias. Biometrics 50:1088–1101. https://doi.org/10.2307/2533446

    Article  CAS  PubMed  Google Scholar 

  25. Liu Z, Zhang H, Liu Z, Xing C, Fu P, Ni Z, Chen J, Lin H, Liu F, He Y, He Y, Miao L, Chen N, Li Y, Gu Y, Shi W, Hu W, Liu Z, Bao H, Zeng C, Zhou M (2015) Multitarget therapy for induction treatment of lupus nephritis: a randomized trial. Ann Intern Med 162:18–26. https://doi.org/10.7326/m14-1030

    Article  PubMed  Google Scholar 

  26. Rovin BH, Solomons N, Pendergraft WF 3rd, Dooley MA, Tumlin J, Romero-Diaz J, Lysenko L, Navarra SV, Huizinga RB (2019) A randomized, controlled double-blind study comparing the efficacy and safety of dose-ranging voclosporin with placebo in achieving remission in patients with active lupus nephritis. Kidney Int 95:219–231. https://doi.org/10.1016/j.kint.2018.08.025

    Article  CAS  PubMed  Google Scholar 

  27. Sun J, Zhang H, Ji Y, Gui M, Yi B, Wang J, Jiang J (2015) Efficacy and safety of cyclophosphamide combined with mycophenolate mofetil for induction treatment of class IV lupus nephritis. Int J Clin Exp Med 8:21572–21578

    CAS  PubMed  PubMed Central  Google Scholar 

  28. Jayne D, Appel G, Chan T, Barkay H, Weiss R, Wofsy D (2013) LB0003 a randomized controlled study of laquinimod in active lupus nephritis patients in combination with standard of care. Ann Rheum Dis 72:A164–A1A164. https://doi.org/10.1136/annrheumdis-2013-eular.528

    Article  Google Scholar 

  29. Li EK, Tam LS, Zhu TY, Li M, Kwok CL, Li TK, Leung YY, Wong KC, Szeto CC (2009) Is combination rituximab with cyclophosphamide better than rituximab alone in the treatment of lupus nephritis? Rheumatology (Oxford) 48:892–898. https://doi.org/10.1093/rheumatology/kep124

    Article  CAS  Google Scholar 

  30. Zhang J, Zhao Z, Hu X (2015) Effect of rituximab on serum levels of anti-c1q and antineutrophil cytoplasmic autoantibodies in refractory severe lupus nephritis. Cell Biochem Biophys 72:197–201. https://doi.org/10.1007/s12013-014-0437-z

    Article  CAS  PubMed  Google Scholar 

  31. Furie R, Nicholls K, Cheng TT, Houssiau F, Burgos-Vargas R, Chen SL, Hillson JL, Meadows-Shropshire S, Kinaszczuk M, Merrill JT (2014) Efficacy and safety of abatacept in lupus nephritis: a twelve-month, randomized, double-blind study. Arthritis Rheumatol 66:379–389. https://doi.org/10.1002/art.38260

    Article  CAS  PubMed  Google Scholar 

  32. The ACCESS Trial Group (2014) Treatment of lupus nephritis with abatacept: the abatacept and cyclophosphamide combination efficacy and safety study. Arthritis Rheumatol 66:3096–3104. https://doi.org/10.1002/art.38790

    Article  CAS  PubMed Central  Google Scholar 

  33. Mysler EF, Spindler AJ, Guzman R, Bijl M, Jayne D, Furie RA, Houssiau FA, Drappa J, Close D, Maciuca R, Rao K, Shahdad S, Brunetta P (2013) Efficacy and safety of ocrelizumab in active proliferative lupus nephritis: results from a randomized, double-blind, phase III study. Arthritis Rheum 65:2368–2379. https://doi.org/10.1002/art.38037

    Article  CAS  PubMed  Google Scholar 

  34. Liu B, Yu Y, Tang Y, Fu S, Liang P, Xu A (2018) FRI0308 corticosteroids combined with doublet or single-agent immunosuppressive therapy for active proliferative lupus nephritis. Ann Rheum Dis 77:691. https://doi.org/10.1136/annrheumdis-2018-eular.1950 URL: https://ard.bmj.com/. Accessed 09 May 2019

  35. Palmer SC, Tunnicliffe DJ, Singh-Grewal D, Mavridis D, Tonelli M, Johnson DW, Craig JC, Tong A, Strippoli GFM (2017) Induction and maintenance immunosuppression treatment of proliferative lupus nephritis: a network meta-analysis of randomized trials. Am J Kidney Dis 70:324–336. https://doi.org/10.1053/j.ajkd.2016.12.008

    Article  PubMed  Google Scholar 

  36. Zhang H, Liu Z, Zhou M, Liu Z, Chen J, Xing C, Lin H, Ni Z, Fu P, Liu F, Chen N, He Y, Liu J, Zeng C, Liu Z (2017) Multitarget therapy for maintenance treatment of lupus nephritis. J Am Soc Nephrol 28:3671–3678. https://doi.org/10.1681/asn.2017030263

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Reddy V, Jayne D, Close D, Isenberg D (2013) B-cell depletion in SLE: clinical and trial experience with rituximab and ocrelizumab and implications for study design. Arthritis Res Ther 15:S2. https://doi.org/10.1186/ar3910

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Orencia (Abatacept) (2013) Prescribing information. Bristol-Myers Squibb, Princeton, NJ URL: http://packageinserts.bms.com/pi/pi_orencia.pdf. Accessed 09 May 2019

  39. Lenschow DJ, Walunas TL, Bluestone JA (1996) CD28/B7 system of T cell costimulation. Annu Rev Immunol 14:233–258. https://doi.org/10.1146/annurev.immunol.14.1.233

    Article  CAS  PubMed  Google Scholar 

  40. Weidenbusch M, Rommele C, Schrottle A, Anders HJ (2013) Beyond the LUNAR trial. Efficacy of rituximab in refractory lupus nephritis. Nephrol Dial Transplant 28:106–111. https://doi.org/10.1093/ndt/gfs285

    Article  CAS  PubMed  Google Scholar 

  41. Kulkarni OP, Anders HJ (2012) Lupus nephritis. How latest insights into its pathogenesis promote novel therapies. Curr Opin Rheumatol 24:457–465. https://doi.org/10.1097/BOR.0b013e328354c877

    Article  CAS  PubMed  Google Scholar 

  42. Yu F, Haas M, Glassock R, Zhao MH (2017) Redefining lupus nephritis: clinical implications of pathophysiologic subtypes. Nat Rev Nephrol 13:483–495. https://doi.org/10.1038/nrneph.2017.85

    Article  PubMed  Google Scholar 

  43. Wofsy D, Hillson JL, Diamond B (2012) Abatacept for lupus nephritis: alternative definitions of complete response support conflicting conclusions. Arthritis Rheum 64:3660–3665. https://doi.org/10.1002/art.34624

    Article  CAS  PubMed  Google Scholar 

Download references

Funding

This study was supported by a grant from the National Natural Science Foundation of China (81670641); a grant from the Guangdong Science and Technology Department (2014A020212062); and a grant from the Guangzhou Science Technology and Innovation Commission (201707010111).

Author information

Authors and Affiliations

Authors

Contributions

BL, YT, and APX designed the study. SF and PFL performed the literature searching and screening. BL, QYO, and YT extracted the data. YFY, ZJX, and YJC performed the statistical analysis. BL, QYO, and YT wrote the manuscript. All authors approved the final version of the manuscript.

Corresponding author

Correspondence to Anping Xu.

Ethics declarations

Disclosures

None.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

ESM 1

(DOC 61 kb)

ESM 2

(DOC 688 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, B., Ou, Q., Tang, Y. et al. Corticosteroids combined with doublet or single-agent immunosuppressive therapy for active proliferative lupus nephritis. Clin Rheumatol 38, 2519–2528 (2019). https://doi.org/10.1007/s10067-019-04596-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10067-019-04596-0

Keywords

Navigation