Skip to main content

Advertisement

Log in

Association of MCP-1-2518A/G polymorphism with susceptibility to autoimmune diseases: a meta-analysis

  • Original Article
  • Published:
Clinical Rheumatology Aims and scope Submit manuscript

Abstract

We performed a meta-analysis to estimate whether combined evidence shows the association between the MCP-1-2518A/G polymorphism and susceptibility to autoimmune diseases. Relevant articles dated to July 2014 were acquired from the PubMed, EMBASE, ISI, and CNKI databases. The number of the genotypes and/or alleles for the MCP-1-2518A/G in cases and control subjects was extracted, and statistical analysis was conducted using STATA 11.2 software. Summary odds ratios (ORs) with their 95 % confidence intervals (95 % CIs) were used to calculate the risk of autoimmune diseases with the MCP-1-2518A/G. Significant increased risk of autoimmune diseases could be found for A allele vs. G allele (OR = 1.616, 95 % CI 1.027–2.542, P = 0.038) and AA + AG vs. GG (OR = 1.616, 95 % CI 1.027–2.542, P = 0.038) in Asian patients with rheumatoid arthritis (RA), and for A allele vs. G allele (OR = 1.383, 95 % CI 1.142–1.676, P = 0.022) and AA vs. AG + GG (OR = 1.575, 95 % CI 1.361–1.823, P < 0.001) in European patients with Crohn’s disease (CD). In addition, when comparison of European patients with lupus nephritis (LN) and without LN, significant association between patients with LN and without LN also could be found for AA vs. AG + GG (OR = 0.713, 95 % CI 0.545–0.933, P = 0.014). This meta-analysis showed that the MCP-1-2518-A allele confers susceptibility to Asian patients with RA and European patients with CD.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Vyse TJ, Todd JA (1996) Genetic analysis of autoimmune disease. Cell 85(3):311–8

    Article  CAS  PubMed  Google Scholar 

  2. Lleo A, Battezzati PM, Selmi C, Gershwin ME, Podda M (2008) Is autoimmunity a matter of sex? Autoimmun Rev 7(8):626–30

    Article  CAS  PubMed  Google Scholar 

  3. Boscolo P, Youinou P, Theoharides TC, Cerulli G, Conti P (2008) Environmental and occupational stress and autoimmunity. Autoimmun Rev 7(4):340–3

    Article  CAS  PubMed  Google Scholar 

  4. Invernizzi P, Gershwin ME (2009) The genetics of human autoimmune disease. J Autoimmun 33(3-4):290–9

    Article  CAS  PubMed  Google Scholar 

  5. Lin JP, Cash JM, Doyle SZ, Peden S, Kanik K, Amos CI, Bale SJ, Wilder RL (1998) Familial clustering of rheumatoid arthritis with other autoimmune diseases. Hum Genet 103(4):475–82

    Article  CAS  PubMed  Google Scholar 

  6. Tait KF, Marshall T, Berman J, Carr-Smith J, Rowe B, Todd JA, Bain SC, Barnett AH, Gough SC (2004) Clustering of autoimmune disease in parents of siblings from the type 1 diabetes Warren repository. Diabet Med 21(4):358–62

    Article  CAS  PubMed  Google Scholar 

  7. Barcellos LF, Kamdar BB, Ramsay PP, DeLoa C, Lincoln RR, Caillier S, Schmidt S, Haines JL, Pericak-Vance MA, Oksenberg JR, Hauser SL (2006) Clustering of autoimmune diseases in families with a high-risk for multiple sclerosis: a descriptive study. Lancet Neurol 5(11):924–31

    Article  CAS  PubMed  Google Scholar 

  8. Morahan G, Peeva V, Mehta M, Williams R (2008) Systems genetics can provide new insights in to immune regulation and autoimmunity. J Autoimmun 31(3):233–6

    Article  CAS  PubMed  Google Scholar 

  9. McCluskey J, Peh CA (1999) The human leucocyte antigens and clinical medicine: an overview. Rev Immunogenet 1(1):3–20

    CAS  PubMed  Google Scholar 

  10. Cen H, Wang W, Leng RX, Wang TY, Pan HF, Fan YG, Wang B, Ye DQ (2013) Association of IFIH1 rs1990760 polymorphism with susceptibility to autoimmune diseases: a meta-analysis. Autoimmunity 46(7):455–62

    Article  CAS  PubMed  Google Scholar 

  11. Lee YH, Rho YH, Choi SJ, Ji JD, Song GG, Nath SK, Harley JB (2007) The PTPN22 C1858T functional polymorphism and autoimmune diseases—a meta-analysis. Rheumatology (Oxford) 46(1):49–56

    Article  CAS  Google Scholar 

  12. Vereecke L, Beyaert R, van Loo G (2011) Genetic relationships between A20/TNFAIP3, chronic inflammation and autoimmune disease. Biochem Soc Trans 39(4):1086–91

    Article  CAS  PubMed  Google Scholar 

  13. Liang YL, Wu H, Shen X, Li PQ, Yang XQ, Liang L, Tian WH, Zhang LF (2012) Association of STAT4 rs7574865 polymorphism with autoimmune diseases: a meta-analysis. Mol Biol Rep 39(9):8873–82

    Article  CAS  PubMed  Google Scholar 

  14. Harigai M, Hara M, Yoshimura T, Leonard EJ, Inoue K, Kashiwazaki S (1993) Monocyte chemoattractant protein-1 (MCP-1) in inflammatory joint diseases and its involvement in the cytokine network of rheumatoid synovium. Clin Immunol Immunopathol 69(1):83–91

    Article  CAS  PubMed  Google Scholar 

  15. Hwang SY, Cho ML, Park B, Kim JY, Kim YH, Min DJ, Min JK, Kim HY (2002) Allelic frequency of the MCP-1 promoter -2518 polymorphism in the Korean population and in Korean patients with rheumatoid arthritis, systemic lupus erythematosus and adult-onset Still’s disease. Eur J Immunogenet 29(5):413–6

    Article  CAS  PubMed  Google Scholar 

  16. Banks C, Bateman A, Payne R, Johnson P, Sheron N (2003) Chemokine expression in IBD. Mucosal chemokine expression is unselectively increased in both ulcerative colitis and Crohn’s disease. J Pathol 199(1):28–35

    Article  PubMed  Google Scholar 

  17. Grimm MC, Elsbury SK, Pavli P, Doe WF (1996) Enhanced expression and production of monocyte chemoattractant protein-1 in inflammatory bowel disease mucosa. J Leukoc Biol 59(6):804–12

    CAS  PubMed  Google Scholar 

  18. Villiger PM, Terkeltaub R, Lotz M (1992) Production of monocyte chemoattractant protein-1 by inflamed synovial tissue and cultured synoviocytes. J Immunol 149(2):722–7

    CAS  PubMed  Google Scholar 

  19. Grandaliano G, Gesualdo L, Ranieri E, Monno R, Montinaro V, Marra F, Schena FP (1996) Monocyte chemotactic peptide-1 expression in acute and chronic human nephritides: a pathogenetic role in interstitial monocytes recruitment. J Am Soc Nephrol 7(6):906–13

    CAS  PubMed  Google Scholar 

  20. Rovin BH, Lu L, Saxena R (1999) A novel polymorphism in the MCP-1 gene regulatory region that influences MCP-1 expression. Biochem Biophys Res Commun 259(2):344–8

    Article  CAS  PubMed  Google Scholar 

  21. Aguilar F, González-Escribano MF, Sánchez-Román J, Núñez-Roldán A (2001) MCP-1 promoter polymorphism in Spanish patients with systemic lupus erythematosus. Tissue Antigens 58(5):335–8

    Article  CAS  PubMed  Google Scholar 

  22. Kim HL, Lee DS, Yang SH, Lim CS, Chung JH, Kim S, Lee JS, Kim YS (2002) The polymorphism of monocyte chemoattractant protein-1 is associated with the renal disease of SLE. Am J Kidney Dis 40(6):1146–52

    Article  CAS  PubMed  Google Scholar 

  23. Tucci M, Barnes EV, Sobel ES, Croker BP, Segal MS, Reeves WH, Richards HB (2004) Strong association of a functional polymorphism in the monocyte chemoattractant protein 1 promoter gene with lupus nephritis. Arthritis Rheum 50(6):1842–9

    Article  CAS  PubMed  Google Scholar 

  24. Nakashima H, Akahoshi M, Shimizu S, Inoue Y, Miyake K, Ninomiya I, Igawa T, Sadanaga A, Otsuka T, Harada M (2004) Absence of association between the MCP-1 gene polymorphism and histological phenotype of lupus nephritis. Lupus 13(3):165–7

    Article  CAS  PubMed  Google Scholar 

  25. Liao CH, Yao TC, Chung HT, See LC, Kuo ML, Huang JL (2004) Polymorphisms in the promoter region of RANTES and the regulatory region of monocyte chemoattractant protein-1 among Chinese children with systemic lupus erythematosus. J Rheumatol 31(10):2062–7

    CAS  PubMed  Google Scholar 

  26. Ye DQ, Hu YS, Li XP, Yang SG, Hao JH, Huang F, Zhang XJ (2005) The correlation between monocyte chemoattractant protein-1 and the arthritis of systemic lupus erythematosus among Chinese. Arch Dermatol Res 296(8):366–71

    Article  CAS  PubMed  Google Scholar 

  27. Sánchez E, Sabio JM, Callejas JL, de Ramón E, Garcia-Portales R, García-Hernández FJ, Jiménez-Alonso J, González-Escribano MF, Martín J, Koeleman BP (2006) Association study of genetic variants of pro-inflammatory chemokine and cytokine genes in systemic lupus erythematosus. BMC Med Genet 7:48

    Article  PubMed  PubMed Central  Google Scholar 

  28. Lima G, Soto-Vega E, Atisha-Fregoso Y, Sánchez-Guerrero J, Vallejo M, Vargas-Alarcón G, Llorente L (2007) MCP-1, RANTES, and SDF-1 polymorphisms in Mexican patients with systemic lupus erythematosus. Hum Immunol 68(12):980–5

    Article  CAS  PubMed  Google Scholar 

  29. Brown KS, Nackos E, Morthala S, Jensen LE, Whitehead AS, Von Feldt JM (2007) Monocyte chemoattractant protein-1: plasma concentrations and A(-2518)G promoter polymorphism of its gene in systemic lupus erythematosus. J Rheumatol 34(4):740–6

    CAS  PubMed  Google Scholar 

  30. Wang YY, Deng DQ, Mao CZ, Xu BY, Hu LP (2007) Study on the association between MCP-1-2518 promoter polymorphism and systemic lupus erythematosus in Chinese Him in Yunnan Province. Int J Immunol 1:5–8

    CAS  Google Scholar 

  31. Hoshi D, Okamoto H, Kaneko H, Ichikawa N, Terai C, Yamanaka H, Kamatani N (2008) Association of a polymorphism in the monocyte chemoattractant protein-1/CCL2 gene and lupus nephritis in systemic lupus erythematosus patients. Clin Exp Rheumatol 26(5):972–3

    CAS  PubMed  Google Scholar 

  32. Piotrowski P, Lianeri M, Gasik R, Roszak A, Olesińska M, Jagodziński PP (2010) Monocyte chemoattractant protein-1 -2518 A/G single nucleotide polymorphism might be associated with renal disease and thrombocytopenia of SLE. J Biomed Biotechnol 13:265

    Google Scholar 

  33. Malafronte P, Vieira JM Jr, Pereira AC, Krieger JE, Barros RT, Woronik V (2010) Association of the MCP-1-2518 A/G polymorphism and no association of its receptor CCR2–64 V/I polymorphism with lupus nephritis. J Rheumatol 37(4):776–82

    Article  CAS  PubMed  Google Scholar 

  34. Aranda F, Wingeyer SP, Muñoz SA, Allievi A, Orden A, Trobo R, Alvarez A, Eimon A, Barreira JC, Schneeberger E, Sarano J, Hofman J, de Larrañaga G (2012) The -2518 A/G polymorphism in the monocyte chemoattractant protein 1 gene is associated with the risk of developing systemic lupus erythematosus in Argentinean patients: a multicenter study. Eur Cytokine Netw 23(1):7–11

    CAS  PubMed  Google Scholar 

  35. Lee YH, Kim HJ, Rho YH, Choi SJ, Ji JD, Song GG (2003) Functional polymorphisms in matrix metalloproteinase-1 and monocyte chemoattractant protein-1 and rheumatoid arthritis. Scand J Rheumatol 32(4):235–9

    CAS  PubMed  Google Scholar 

  36. González-Escribano MF, Torres B, Aguilar F, Rodríguez R, García A, Valenzuela A, Núñez-Roldán A (2003) MCP-1 promoter polymorphism in Spanish patients with rheumatoid arthritis. Hum Immunol 64(7):741–4

    Article  PubMed  Google Scholar 

  37. Herfarth H, Göke M, Hellerbrand C, Mühlbauer M, Vogl D, Schölmerich J, Rogler G (2003) Polymorphism of monocyte chemoattractant protein 1 in Crohn’s disease. Int J Colorectal Dis 18(5):401–5

    Article  PubMed  Google Scholar 

  38. Palmieri O, Latiano A, Salvatori E, Valvano MR, Bossa F, Latiano T, Corritore G, di Mauro L, Andriulli A, Annesec V (2010) The -A2518G polymorphism of monocyte chemoattractant protein-1 is associated with Crohn’s disease. Am J Gastroenterol 105(7):1586–94

    Article  CAS  PubMed  Google Scholar 

  39. Karrer S, Bosserhoff AK, Weiderer P, Distler O, Landthaler M, Szeimies RM, Müller-Ladner U, Schölmerich J, Hellerbrand C (2005) The -2518 promotor polymorphism in the MCP-1 gene is associated with systemic sclerosis. J Invest Dermatol 124(1):92–8

    Article  CAS  PubMed  Google Scholar 

  40. Navratilova Z, Lukac J, Mrazek F, Kriegova E, Bucova M, Bosak V, Petrek M (2008) MCP-1-2518 A/G single nucleotide polymorphism in Slovak patients with systemic sclerosis. Mediators Inflamm 20:40–3

    Google Scholar 

  41. Carulli MT, Spagnolo P, Fonseca C, Welsh KI, Dubois RM, Black CM, Denton CP (2008) Single-nucleotide polymorphisms in CCL2 gene are not associated with susceptibility to systemic sclerosis. J Rheumatol 35(5):839–44

    CAS  PubMed  Google Scholar 

  42. Radstake TR, Vonk MC, Dekkers M, Schijvenaars MM, Treppichio WL, Lafyatis R, Riemekasten G, van den Hoogen F, Coenen MJ (2009) The -2518A > G promoter polymorphism in the CCL2 gene is not associated with systemic sclerosis susceptibility or phenotype: results from a multicenter study of European Caucasian patients. Hum Immunol 70(2):130–3

    Article  CAS  PubMed  Google Scholar 

  43. Steinmetz OM, Panzer U, Harendza S, Mertens PR, Ostendorf T, Floege J et al (2004) No association of the -2518 MCP-1 A/G promoter polymorphism with incidence and clinical course of IgA nephropathy. Nephrol Dial Transplant 19(3):596–601

    Article  CAS  PubMed  Google Scholar 

  44. Mori H, Kaneko Y, Narita I, Goto S, Saito N, Kondo D, Sato F, Ajiro J, Saga D, Ogawa A, Sakatsume M, Ueno M, Tabei K, Geivo F (2005) Monocyte chemoattractant protein-1 A-2518G gene polymorphism and renal survival of Japanese patients with immunoglobulin A nephropathy. Clin Exp Nephrol 9(4):297–303

    Article  CAS  PubMed  Google Scholar 

  45. Egger M, Smith GD, Phillips AN (1997) Meta-analysis: principles and procedures. BMJ 315(7121):1533–7

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Alzawawy A, Zohary M, Ablordiny M, Eldalie M (2009) Estimation of monocyte-chemoattractantprotein-1 (Mcp-1) level in patients with lupus nephritis. Int J Rheum Dis 12(4):311–8

    Article  PubMed  Google Scholar 

  47. Marks SD, Shah V, Pilkington C, Tullus K (2010) Urinary monocyte chemoattractant protein-1 correlates with disease activity in lupus nephritis. Pediatr Nephrol 25(11):2283–8

    Article  PubMed  Google Scholar 

  48. Anaya JM (2010) The autoimmune tautology. Arthritis Res Ther 12(6):147

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgments

We thank all our colleagues working in the Department of Rheumatology and Clinical Immunology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Key Laboratory of Rheumatology and Clinical Immunology.

Disclosures

None.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yongzhe Li.

Additional information

Si Chen and Chuiwen Deng contributed equally to this work.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Fig. S1

Forest plots of all models for SSc in overall meta-analysis. (GIF 172 kb)

High resolution image (TIFF 453 kb)

Fig. S2

Forest plots of all models for SLE in overall meta-analysis. (GIF 298 kb)

High resolution image (TIFF 848 kb)

Fig. S3

Forest plots of all models for SLE in stratified meta-analysis (GIF 285 kb)

High resolution image (TIFF 803 kb)

Fig. S4

Forest plots of all models for IgAN in overall meta-analysis. (GIF 254 kb)

High resolution image (TIFF 2700 kb)

Fig. S5

Forest plots of all models for RA in overall meta-analysis. (GIF 192 kb)

High resolution image (TIFF 395 kb)

Fig. S6

Forest plots of other models for CD in overall meta-analysis and forest plots of other models for RA in stratified meta-analysis. (GIF 209 kb)

High resolution image (TIFF 496 kb)

Fig. S7

Forest plots of other models for SLE with LN patients vs. controls in overall meta-analysis (GIF 133 kb)

High resolution image (TIFF 296 kb)

Fig. S8

Forest plots of all models for SLE with LN patients vs. controls in stratified meta-analysis. (GIF 228 kb)

High resolution image (TIFF 682 kb)

Fig. S9

Forest plots of all models for SLE without LN patients vs. controls in overall meta-analysis. (GIF 270 kb)

High resolution image (TIFF 591 kb)

Fig. S10

Forest plots of all models for SLE without LN patients vs. controls in stratified meta-analysis. (GIF 279 kb)

High resolution image (TIFF 654 kb)

Fig. S11

Forest plots of all models for SLE with LN patients vs. SLE without LN patients in overall meta-analysis. (GIF 254 kb)

High resolution image (TIFF 605 kb)

Fig. S12

Forest plots of other models for SLE with LN patients vs. SLE without LN patients in stratified meta-analysis. (GIF 210 kb)

High resolution image (TIFF 573 kb)

Fig. S13

The results of sensitivity analysis from SLE without LN patients vs. controls. (GIF 188 kb)

High resolution image (TIFF 2700 kb)

Fig. S14

The results of sensitivity analysis from SLE with LN patients vs. controls. (GIF 205 kb)

High resolution image (TIFF 2700 kb)

Fig. S15

The results of sensitivity analysis from SLE with LN patients vs. SLE without LN patients. (GIF 204 kb)

High resolution image (TIFF 2700 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chen, S., Deng, C., Hu, C. et al. Association of MCP-1-2518A/G polymorphism with susceptibility to autoimmune diseases: a meta-analysis. Clin Rheumatol 35, 1169–1179 (2016). https://doi.org/10.1007/s10067-015-3060-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10067-015-3060-5

Keywords

Navigation