Skip to main content
Log in

Dynamic process simulation of construction solid waste (CSW) landfill landslide based on SPH considering dilatancy effects

  • Original Paper
  • Published:
Bulletin of Engineering Geology and the Environment Aims and scope Submit manuscript

Abstract

Construction solid waste (CSW) landfill landslides, such as the Guangming New District landslide, which occurred in Shenzhen (hereafter the Shenzhen landslide), occur when the material is loose and saturated. They usually exhibit characteristics such as abrupt failure and whole collapse. During the propagation of landslides, dilatation behavior plays an important role in causing liquefaction, resulting in high velocity and exceptionally long run-out dynamics. We propose a dynamic model for describing fluidized CSW landslides by integrating the dilatancy model into smoothed particle hydrodynamics (SPH). The dilatancy model implies that the occurrence of dilation or the contraction of the granular-fluid mixture depends on the initial solid volume fraction. The dynamic model is used to simulate the Shenzhen landslide, and special attention is paid to the effects of different initial solid volumes on the mobility of the CSW landslide. The results show that when the solid volume fraction is higher than the critical value, contraction occurs, the excess pore water pressure increases, and the basal friction resistance is reduced. CSW landslide mobility is based on the initial solid volume fraction (or initial void ratio) of the granular-fluid mixture; a slight change in the initial volume fraction significantly affects the mobility of the CSW landfill landslide.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

Abbreviations

\(b\) :

Proportionality coefficient

\(c\) :

Cohesion

\(\dot{e}_{ij}\) :

Deviatoric strain-rate tensor

\(G\) :

Shear modulus of soil skeleton

\(K_{1}\) :

Bulk modulus of soil skeleton

\(K_{\text{m}}\) :

Bulk modulus of solid particles

\(K_{\text{s}}\) :

Bulk modulus of solid particles

\(K_{\text{w}}\) :

Bulk modulus of water

\(K_{t}\) :

Total bulk modulus

L M :

Maximum source area material migration displacement

\(m_{0}\) :

Initial solid volume fraction

\(m_{\text{s}}\) :

Current solid volume fraction

\(m_{\text{w}}\) :

Current water volume fraction

\(m_{\text{a}}\) :

Current air volume fraction

\(m_{\text{eq}}\) :

Equilibrium solid volume fraction

\(m_{\text{crit}}\) :

Lithostatic critical-state solid volume fraction

N :

Generalized dimensionless parameter

\(p_{0}^{\text{a}}\) :

Standard atmospheric pressure

\(\Delta p^{\text{a}}\) :

Pressure increment

\(s_{ij}^{\text{N}}\) :

New second invariant of deviatoric stress tensor

\(u_{\text{w}}\) :

Pore water pressure

\(u_{\text{a}}\) :

Pore air pressure

\(u_{\text{s}}\) :

Matric suction

\(u_{\text{f}}\) :

Pore fluid pressure

\(\Delta u_{\text{f}}^{\text{e}}\) :

Excess pore fluid pressure increment

\(u_{\text{t}}^{\text{C}}\) :

Corrected values of pore fluid pressure

\(u_{\text{f}}^{\text{N}}\) :

New pore fluid pressure

v 0 :

Total volume

\(\dot{\gamma }\) :

Shear strain-rate

\(\Delta \gamma\) :

Shear strain increment

\(\delta_{ij}\) :

Kronecker’s delta

\(\mu\) :

Effective shear viscosity of pore fluid

\(\rho\) :

Current mixture bulk density

\(\rho_{0}\) :

Initial mixture bulk density

\(\rho_{\text{s}}\) :

Soil grain density

\(\rho_{\text{w}}\) :

Initial fluid phase density

\(\varepsilon_{\text{v}}\) :

Volume strain of solid skeleton

\(\Delta \varepsilon_{\text{v}}^{\text{e}}\) :

Volume strain increment

\(\xi\) :

Calibration constant

\(\zeta\) :

Characteristic grain diameter

\(\sigma_{0}\) :

Reference mean stress

\(\sigma_{\text{e}}\) :

Mean effective stress

\(\sigma_{\text{t}}\) :

Mean total stress

\(\sigma_{\text{t}}^{\text{C}}\) :

Corrected values of total mean stress

\(\sigma_{\text{e}}^{\text{N}}\) :

New effective stress

\(\sigma_{ij}^{{\prime }}\) :

Net stress tensor acting on solid skeleton

\(\sigma_{ij}^{\text{N}}\) :

New total stress

\(\sigma_{\text{t}}^{\text{N}}\) :

New total mean stress

\(\tau_{\hbox{min} }\) :

Minimum shear strength

\(\tau_{\text{s}}\) :

Shear stress

\(\tau^{\text{N}}\) :

New second deviatoric shear stress

\(\phi\) :

Internal friction angle

\(\psi\) :

Dilatancy angle

References

  • Anderson JD, Wendt J (1995) Computational fluid dynamics, vol 206. McGraw-Hill, New York

    Google Scholar 

  • Bolton MD (1984) The strength and dilatancy of sands. Cambridge University Engineering Department

  • Bouchut F, Fernández-Nieto ED, Mangeney A, Narbona-Reina G (2016) A two-phase two-layer model for fluidized granular flows with dilatancy effects. J Fluid Mech 801:166–221

    Article  Google Scholar 

  • Cascini L, Cuomo S, Pastor M, Sorbino G, Piciullo L (2012) Modeling of propagation and entrainment phenomena for landslides of the flow type: the May 1998 case study. In: Landslides and engineered slopes: protecting society through improved understanding. Proceedings of the 11th International and 2nd North American Symposium on Landslides, vol 38, pp 1723–1729, Chirico

  • Cascini L, Cuomo S, Pastor M, Sorbino G, Piciullo L (2014) SPH run-out modelling of channelised landslides of the flow type. Geomorphology 214:502–513

    Article  Google Scholar 

  • Chen CL (1987) Comprehensive review of debris flow modeling concepts in Japan. Rev Eng Geol 7:13–30

    Article  Google Scholar 

  • Chen WF, Mizuno E (1990) Nonlinear analysis in soil mechanics. Elsevier, Amsterdam, pp 143–150

    Google Scholar 

  • Cola S, Calabrò N, Pastor M (2008) Prediction of the flow-like movements of Tessina landslide by SPH model. Landslides and engineered slopes. Taylor & Francis Group, London

    Google Scholar 

  • Colomer-Mendoza FJ, Esteban-Altabella J, García-Darás F, Gallardo-Izquierdo A (2013) Influence of the design on slope stability in solid waste landfills. Earth Sci 2(2):31–39

    Google Scholar 

  • Davies TR, McSaveney MJ (2009) The role of rock fragmentation in the motion of large landslides. Eng Geol 109(1):67–79

    Article  Google Scholar 

  • Fung YC, Tong P (2001) Classical and computational solid mechanics, vol 1. World Scientific

  • George DL, Iverson RM (2014) A depth-averaged debris-flow model that includes the effects of evolving dilatancy: II. Numerical predictions and experimental tests. Proc R Soc A 470(2170):20130820

  • Gray JMNT, Edwards AN (2014) A depth-averaged-rheology for shallow granular free-surface flows. J Fluid Mech 755:503–534

    Article  Google Scholar 

  • Haddad B, Pastor M, Palacios D, Munoz-Salinas E (2010) A SPH depth integrated model for Popocatépetl 2001 lahar (Mexico): sensitivity analysis and runout simulation. Eng Geol 114:312–329

    Article  Google Scholar 

  • Huang Y, Dai Z (2014) Large deformation and failure simulations for geo-disasters using smoothed particle hydrodynamics method. Eng Geol 168:86–97

    Article  Google Scholar 

  • Huang Y, Zhang W, Mao W, Jin C (2011) Flow analysis of liquefied soils based on smoothed particle hydrodynamics. Nat Hazards 59:1547–1560

    Article  Google Scholar 

  • Huang Y, Zhang W, Xu Q, Xie P, Hao L (2012) Run-out analysis of flow-like landslides triggered by the Ms 8.0 2008 Wenchuan earthquake using smoothed particle hydrodynamics. Landslides 9:275–283

    Article  Google Scholar 

  • Huang Y, Dai Z, Zhang W, Huang M (2013) SPH-based numerical simulations of flow slides in municipal solid waste landfills. Waste Manage Res 31:256–264

    Article  Google Scholar 

  • Hutter K, Laloui L, Vulliet L (1999) Thermodynamically based mixture models of saturated and unsaturated soils. Mech Cohes Frict Maters 4:295–338

    Article  Google Scholar 

  • Ishihara K, Yasuda S, Yoshida Y (1989) Liquefaction-induced flow failure of embankments and residual strength of silty sands. Sino-Japan Joint Symposium on Improvement of Weak Ground, pp 69–80

  • Iverson RM (2000) Landslide triggering by rain infiltration. Water Resour Res 36:1897–1910

    Article  Google Scholar 

  • Iverson RM (2003) The debris-flow rheology myth[C]. Debris Flow Hazards Mitig Mech Predict Assess 1:303–314

    Google Scholar 

  • Iverson RM (2005) Regulation of landslide motion by dilatancy and pore pressure feedback. J Geophys Res Earth Surf 110(F2):273–280

    Article  Google Scholar 

  • Iverson RM, George DL (2014) A depth-averaged debris-flow model that includes the effects of evolving dilatancy. I. Physical basis. Proc R Soc A 470(2170):20130819

  • Iverson RM, George DL (2016) Modelling landslide liquefaction, mobility bifurcation and the dynamics of the 2014 Oso disaster. Géotechnique 66:175–187

    Article  Google Scholar 

  • Iverson RM, Reid ME, Iverson NR, LaHusen RG, Logan M, Mann JE, Brien DL (2000) Acute sensitivity of landslide rates to initial soil porosity. Science 290:513–516

    Article  Google Scholar 

  • Jackson R (2000) The dynamics of fluidized particles. Cambridge University Press

  • Konrad JM (1990) Minimum undrained strength of two sands. J Geotech Eng 116:932–947

    Article  Google Scholar 

  • Konrad JM (1993) Undrained response of loosely compacted sands during monotonic and cyclic compression tests. Géotechnique 43:69–89

    Article  Google Scholar 

  • Legros F (2002) The mobility of long-runout landslides. Eng Geol 63:301–331

    Article  Google Scholar 

  • Liu GR, Gu YT (2005) An introduction to meshfree methods and their programming. Springer, Berlin

  • Liu GR, Liu MB (2003) Smoothed particle hydrodynamics: a meshfree particle method. World Scientific

  • Liu MB, Liu GR (2010) Smoothed particle hydrodynamics (SPH): an overview and recent developments. Arch Comput Methods Eng 17:25–76

    Article  Google Scholar 

  • Lucas A, Mangeney A, Ampuero JP (2014) Frictional velocity-weakening in landslides on Earth and on other planetary bodies. Nat Commun 5:3417

    Article  Google Scholar 

  • Lucy LB (1977) A numerical approach to the testing of the fission hypothesis. Astronom J 82:1013–1024

    Article  Google Scholar 

  • Major JJ (2000) Gravity-driven consolidation of granular slurries: implications for debris-flow deposition and deposit characteristics. J Sediment Res 70:64–83

    Article  Google Scholar 

  • Major JJ, Iverson RM, McTigue DF, Macias S, Fiedorowicz BK (1997) Geotechnical properties of debris-flow sediments and slurries. In: Proceedings of the 1997 1st International Conference on Debris-Flow Hazards Mitigation: Mechanics, Prediction, and Assessment, pp 249–259

  • McDougall S, Hungr O (2005) Dynamic modelling of entrainment in rapid landslides. Can Geotech J 42:1437–1448

    Article  Google Scholar 

  • Ochiai H, Okada Y, Furuya G, Okura Y, Matsui T, Sammori T, Terajima T, Sassa K (2004) A fluidized landslide on a natural slope by artificial rainfall. Landslides 1:211–219

    Article  Google Scholar 

  • Ouyang C, Zhou K, Xu Q, Yin J, Peng D, Wang D, Li W (2016) Dynamic analysis and numerical modeling of the 2015 catastrophic landslide of the construction waste landfill at Guangming, Shenzhen, China. Landslides 1–14

  • Pailha M, Pouliquen O (2009) A two-phase flow description of the initiation of underwater granular avalanches. J Fluid Mech 633:115–135

    Article  Google Scholar 

  • Pastor M, Blanc T, Pastor MJ (2009a) A depth-integrated viscoplastic model for dilatant saturated cohesive-frictional fluidized mixtures: application to fast catastrophic landslides. J Nonnewton Fluid Mech 158:142–153

    Article  Google Scholar 

  • Pastor M, Haddad B, Sorbino G, Cuomo S, Drempetic V (2009b) A depth-integrated, coupled SPH model for flow-like landslides and related phenomena. Int J Num Anal Meth Geomech 33:143–172

    Article  Google Scholar 

  • Pastor M, Blanc T, Haddad B, Petrone S, Morles MS, Drempetic V, Issler D, Crosta GB, Cascini L, Sorbino G, Cuomo S (2014) Application of a SPH depth-integrated model to landslide run-out analysis. Landslides 11:793–812

    Article  Google Scholar 

  • Sheng D, Fredlund DG, Gens A (2008) A new modelling approach for unsaturated soils using independent stress variables. Can Geotech J 45:511–534

    Article  Google Scholar 

  • Sheng LT, Tai YC, Kuo CY, Hsiau SS (2013) A two-phase model for dry density-varying granular flows. Adv Powder Technol 24:132–142

    Article  Google Scholar 

  • Uzuoka R, Yashima A, Kawakami T, Konrad JM (1998) Fluid dynamics based prediction of liquefaction induced lateral spreading. Comput Geotech 22:243–282

    Article  Google Scholar 

  • Violeau D (2012) Fluid mechanics and the SPH method: theory and applications. Oxford University Press, Oxford

  • Wang G, Sassa K (2003) Pore-pressure generation and movement of rainfall-induced landslides: effects of grain size and fine-particle content. Eng Geol 69:109–125

    Article  Google Scholar 

  • Yin Y, Li B, Wang W, Zhan L, Xue Q, Gao Y, Zhang N, Chen H, Liu T, Li A (2016) Mechanism of the December 2015 catastrophic landslide at the Shenzhen landfill and controlling geotechnical risks of urbanization. Engineering 2:230–249

    Article  Google Scholar 

Download references

Acknowledgments

This work was supported as a joint research project by NSFC-ICIMOD (Grant no. 41661144041) and the Science and Technology Department of Sichuan Province of China (Grant no. 2016SZ0067).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Siming He.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liang, H., He, S., Lei, X. et al. Dynamic process simulation of construction solid waste (CSW) landfill landslide based on SPH considering dilatancy effects. Bull Eng Geol Environ 78, 763–777 (2019). https://doi.org/10.1007/s10064-017-1129-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10064-017-1129-x

Keywords

Navigation