Skip to main content
Log in

Electro-osmotic flow in clays and its potential for reducing clogging in mechanical tunnel driving

  • Original Paper
  • Published:
Bulletin of Engineering Geology and the Environment Aims and scope Submit manuscript

Abstract

Clogging during mechanical tunnel driving is not only a serious technical issue, but also an economic one. The costs of a tunnel excavation can easily rise and disputes between the awarding authorities and the executive companies may occur. Although the literature is full of cases describing the clogging in clayey soils and despite countermeasures being available, clogging still occurs. This study proposes an alternative method to diminish adhesion of clays on TBMs. Electro-osmotic flow experiments, spectral induced polarisation tests and Zeta-potential simulations were performed on kaolinite and smectite, mixed with several pore fluids under one critical consistency index. The results showed that the electrical parameters were not only influenced by the clay mineralogy per se, but also by the pore fluid chemistry. To apply the laboratory findings in in situ conditions, several theoretical considerations have been taken into account. Although further research is required, the study indicates electro-osmosis may be a new and revolutionary approach to deal with the clogging of TBMs.

Résumé

Le colmatage lors du creusement d’un tunnel est non seulement un grave problème technique, mais aussi une question économique. Ce travail de recherche propose une méthode alternative pour diminuer l’adhérence des sols argileux sur les tunneliers. Des expériences d’écoulement électro-osmotique, des essais de polarisation induite spectrale (SIP) et des simulations de potentiel zêta ont été effectués avec de la kaolinite et de la smectite, mélangées avec plusieurs fluides pour un indice de consistance critique. Les résultats ont montré que les paramètres électriques étaient non seulement influencés par la minéralogie de l’argile, mais aussi par la chimie du fluide interstitiel. Pour appliquer ces résultats de laboratoire aux conditions in situ, plusieurs considérations théoriques ont été prises en compte. Bien que des études supplémentaires soient nécessaires, on conclut que l’électro-osmose pourrait constituer une approche nouvelle et révolutionnaire pour traiter du problème du colmatage des tunneliers.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  • Acar YB, Alshawabkeh AN (1993) Principles of electrokinetic remediation. Environ Sci Technol 27(13):2638–2647

    Article  Google Scholar 

  • Bette U, Büchler M (2010) Taschenbuch für den kathodischen Korrosionsschutz, 8th edn, Vulkan Verlag

  • Bjerrum L, Moum J, Eide O (1967) Application of electro-osmosis to a foundation problem in Norwegian quick clay. Géotechnique 17:214–235

    Article  Google Scholar 

  • Casagrande L (1948) Electro-osmosis in soils. Géotechnique 1:159–177

    Article  Google Scholar 

  • Dieng MA (2005) Der Wasseraufnahmeversuch nach DIN 18132 in einem neu entwickelten Gerät. Bautechnik 82:28–32

    Article  Google Scholar 

  • Draganov L (1986) Elektrochemische Bodenverfestigung von Lockergesteinen. PhD thesis, University of Mining and Geology, Sofia

  • Feinendegen M, Ziegler M, Spagnoli G, Weh M, Neher HP, Fernandez-Steeger TM, Stanjek H (2010) Grenzflächenprozesse zwischen Mineral—und Werkzeugoberflächen—Verklebungsproblematik beim maschinellen Tunnelvortrieb mit Erddruckschilden. Geotechnik 33(2):180–184

    Google Scholar 

  • Lageman R (1993) Electroreclamation. Environ Sci Technol 27(13):2648–2650

    Article  Google Scholar 

  • Leroy P, Revil A (2004) A triple layer model of the surface electrochemical properties of clay minerals. J Colloid Interface Sci 270(2):248–255

    Article  Google Scholar 

  • Leroy P, Revil A, Altmann S, Tournassat C (2007) Modeling the composition of the pore water in a clay-rock geological formation (Callovo-Oxfordian, France). Geochimica Cosmochimica Acta 71(5):1087–1097. doi:10.1016/j.gca.2006.11.009

    Article  Google Scholar 

  • Maidl BR, Herrenknecht M, Anheuser L (1996) Mechanised shield tunneling, 1st edn. Ernst and Sohn, Berlin

    Google Scholar 

  • Meier LP, Kahr G (1999) Determination of the cation exchange capacity (CEC) of clay minerals using the complexes of copper (II) ion with triethylenetetramine and tetraethylenepentamine. Clays Clay Miner 47:386–388

    Article  Google Scholar 

  • Micic S, Shang JQ, Lo KY (2001) Electrokinetic strengthening of marine clay adjacent to offshore foundations. In: Proceedings of the 11th international offshore and polar engineering conference. Stvanger, Norway, 17–22 June, pp 694–701

  • Milligan G (2000) Lubrification and soil conditioning in tunnelling, pipe jacking and microtunnelling. State of Art Review, New York, pp 1–46

  • Mitchell JK, Soga K (2005) Fundamentals of soil behavior, 3rd edn. Wiley, New York

  • Mohamedelhassan E, Shang JQ (2001) Effects of electrode materials and current intermittence in electro-osmosis. Ground Improv 5:3–11

    Article  Google Scholar 

  • Mohamedelhassan E, Shang JQ (2002) Feasibility assessment of electro-osmotic consolidation on marine sediment. Ground Improv 6(4):145–152

    Article  Google Scholar 

  • Reuss F (1808) Sur un nouvel effet de l’ électricité galvanique. Memoires de la Societe Imperiale des Naturalistes de Moscou 2:326–337

    Google Scholar 

  • Revil A, Leroy P (2004) Constitutive equations for ionic transport in porous shales. J Geophys Res Solid Earth 109:B3. doi:10.1029/2003jb002755

    Article  Google Scholar 

  • Roy S, Cooper GA (1993) Prevention of bit-balling in shales—some preliminary results. IADC Paper 23870, proc SPE/IADC drilling conference, New Orleans LA, 18–21 February 1992, pp 259–268

  • Segall B, Bruell C (1992) Electroosmotic contaminant removal processes. J Environ Eng 118(1):84–100

    Article  Google Scholar 

  • Shinkin GN, Reuter F, Waldmann J (1974) Elektrochemische Bodenvergütung. VEB Deutscher Verlag für Grundstoffindustrie Leipzig

  • Spagnoli G (2011) Electro-chemo-mechanical manipulations of clays regarding the clogging during EPB-tunnel driving. Mainz Verlag, Aachen

    Google Scholar 

  • Spagnoli G, Klitzsch N, Fernández-Stegeer T, Feinendegen M, Real Rey A, Stanjek H, Azzam R (2011) Application of electro-osmosis to reduce the adhesion of clay during mechanical tunnel driving. Environ Eng Geosc 17(4):417–426

    Article  Google Scholar 

  • Spagnoli G, Rubinos D, Stanjek H, Fernández-Stegeer T, Feinendegen M, Azzam R (2012a) Undrained shear strength of clays as modified by pH variations. Bull Eng Geol Environ 71(1):135–148

    Article  Google Scholar 

  • Spagnoli G, Stanjek H, Sridharan A (2012b) Influence of ethanol/water mixture on the undrained shear strength of pure clays. Bull Eng Geol Environ 71(2):389–398

    Article  Google Scholar 

  • Thevanayagam S, Rishindran T (1998) Injections of nutrients and TEAs in clayey soil using electrokinetics. J Geotech Geoenviron Eng 124(4):330–338

    Article  Google Scholar 

  • Thewes M (1999) Adhäsion von Tonböden beim Tunnelvortrieb mit Flüssigkeitsschilden. Shaker Verlag, Aachen

    Google Scholar 

  • Tombacz E, Szekeres M (2006) Surface charge heterogeneity of kaolinite in aqueous suspension in comparison with montmorillonite. Appl Clay Sci 34:105–124

    Article  Google Scholar 

  • Van Baalen LR (1999) Reduction of clay adherence by electro-osmosis. Master thesis, Faculty of Civil Engineering and Geosciences, TU Delft

  • Van Olphen H (1963) An introduction to clay colloid chemistry, Interscience Publishers, New York

  • Wilson JT, Leach LE, Henson M, Jones JN (1986) In situ biorestoration as a groundwater remediation technique. Ground Water Monit Rev 6(1):56–64

    Google Scholar 

  • Yeung AT (1994) Electro-kinetic flow processes and their applications. Adv Porous Media 2:307–393

    Google Scholar 

Download references

Acknowledgments

This paper is publication no. GEOTECH-1985 of the German BMBF/DFG “Geotechnologien” program, whose financial support made this research possible. The authors also thank the following companies which have provided the materials for this research: Dorfner GmbH and HA Minerals GmbH. The authors wish also to thank Rafig Azzam, Martin Feinendegen and Tomás Fernández-Steeger for the cooperation throughout the project.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Giovanni Spagnoli.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Heuser, M., Spagnoli, G., Leroy, P. et al. Electro-osmotic flow in clays and its potential for reducing clogging in mechanical tunnel driving. Bull Eng Geol Environ 71, 721–733 (2012). https://doi.org/10.1007/s10064-012-0431-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10064-012-0431-x

Keywords

Mots clés

Navigation