Skip to main content
Log in

Reusing heterogeneous data for the conceptual design of shapes in virtual environments

  • Original Article
  • Published:
Virtual Reality Aims and scope Submit manuscript

Abstract

Today, digital data such as 2D images, 3D meshes and 3D point clouds are widely used to design virtual environments (VE). Most of the time, only one type of those multimodal data is used to describe and specify the shapes of the objects. However, a single object can be seen as a combination of components linked with constraints specifying the relationships and the rigid transformations defining their arrangement. Thus, the definition of new methods able to combine any kind of multimodal data in an easy way would allow non-experts of VE to rapidly mock up objects and scenes. In this paper, we propose a new shape description model together with its associated constraints toolbox enabling the description of complex shapes from multimodal data. Not only rigid transformations are considered but also scale modifications according to the specified context of the constraint setting. The heterogeneous virtual objects (i.e., composed by scalable multimodal components) then result from the resolution of a constraint satisfaction problem through an optimization approach. The proposed approach is illustrated and validated with examples obtained using our prototype software.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19

Similar content being viewed by others

References

  • Allègre R, Galin E, Chaine R, Akkouche S (2006) The HybridTree: mixing skeletal implicit surfaces, triangle meshes, and point sets in a free-form modeling system. Graph Models 68(1):42–64

    Article  MATH  Google Scholar 

  • Antonelli M, Beccari C, Casciola G, Ciarloni R, Morigi S (2013) Subdivision surfaces integrated in a CAD system. Comput Aided Des 45(11):1294–1305

    Article  Google Scholar 

  • Biasotti S, Giorgi D, Spagnuolo M, Falcidieno B (2008) Reeb graphs for shape analysis and applications. Theoret Comput Sci 392(1–3):5–22

    Article  MathSciNet  MATH  Google Scholar 

  • Bloch I (1999) Fuzzy relative position between objects in image processing: a morphological approach. IEEE Trans Pattern Anal Mach Intell 21(7):657–664

    Article  Google Scholar 

  • Décriteau D, Pernot J-P, Daniel M (2016) Towards a declarative modelling approach built on top of a CAD modeller. Comput Aided Design Appl 13(6):737–746

    Article  Google Scholar 

  • Deluca L, Véron P, Florenzano M (2006) Reverse engineering of architectural buildings based on a hybrid modeling approach. Comput Graph 30(2):160–176

    Article  Google Scholar 

  • El-Hakim SF (2002) Semi-automatic 3D reconstruction of occluded and unmarked surfaces from widely separated views. Int Arch Photogr Remote Sens Spatial Inf Sci 34(5):143–145

    Google Scholar 

  • Falcidieno B, Spagnuolo M, Alliez P, Quak E, Vavalis E, Houstis C (2004) Towards the semantics of digital shapes: the AIM@SHAPE approach. EWIMT

  • Hudelot C, Atif J, Bloch I (2008) Fuzzy spatial relation ontology for image interpretation. Fuzzy Sets Syst 159(15):1929–1951

    Article  MathSciNet  Google Scholar 

  • Ingber L (1993) Simulated annealing: practice versus theory. Math Comput Model 18(11):29–57

    Article  MathSciNet  MATH  Google Scholar 

  • Jain A, Thormählen T, Ritschel T, Seidel H-P (2012) Exploring shape variations by 3D-model decomposition and part-based recombination. Comput Graphics Forum 31(2):631–640

    Article  Google Scholar 

  • Jiang N, Tan P, Cheong LF (2009) Symmetric architecture modeling with a single image. ACM Trans Graph 28(5):1–8

    Article  Google Scholar 

  • Lee J, Funkhouser T (2008) Sketch-based search and composition of 3D models. In: EUROGRAPHICS workshop on sketch-based interfaces and modeling, 2008

  • Luciano da Fontoura C, Roberto Marcondes Cesar J (2000) Shape analysis and classification: theory and practice. CRC Press, Boca Raton

    Book  MATH  Google Scholar 

  • Mathematica9 (2016) Available: http://www.wolfram.com/mathematica/new-in-9/

  • Mehrotra S (1992) On the implementation of a primal-dual interior point method. SIAM J Optim 2:575–601

    Article  MathSciNet  MATH  Google Scholar 

  • Mitra N, Wand M, Zhang H, Cohen-Or D, Kim V, Huang Q-X (2013) Structure-aware shape processing. In: SIGGRAPH Asia 2013 courses. ACM, New York

  • Nelder J, Mead R (1965) A simplex method for function minimization. Comput J 7:308–313

    Article  MathSciNet  MATH  Google Scholar 

  • Office Room (2016) Available: http://www.decosee.com/2014/04/07/modern-office-room-minimalist-idea-23394.html

  • Panchetti M, Pernot J-P, Véron P (2010) Towards recovery of complex shapes in meshes using digital images for reverse engineering applications. Comput Aided Des 42(8):693–707

    Article  Google Scholar 

  • Pernot J-P, Falcidieno B, Giannini F, Léon J-C (2008) Hybrid models deformation tool for free-form shapes manipulation. In: ASME 2008 international design engineering technical conferences & design and automation conference, New-York

  • Price K, Storn R (1997) Differential evolution. Dr. Dobb’s J 264:18–24

    MATH  Google Scholar 

  • Reeb G (1946) Sur les points singuliers d’une forme de Pfaff complètement intégrable ou d’une fonction numérique. Comptes-rendus de l’Académie des Sciences, pp 848–849

  • Repository TS (2011–2015) Shape repository. http://visionair.ge.imati.cnr.it/ontologies/shapes/

  • Sawyer K (2013) Zig Zag: the surprising path to greater creativity. Jossey-Bass, New York

    Google Scholar 

  • Smith G (1998) Idea-generation techniques: a formulary of active ingredients. J Creative Behav 32(2):107–133

    Article  MathSciNet  Google Scholar 

  • Takemura CM (2008) Modelagem de posições relativas de formas complexas para análise de configuração espacial. Doutorado em Ciências da Computação, Universidade de São Paulo

  • Tutenel T, Bidarra R, Smelik RM, de Kraker KJ (2008) The role of semantics in games and simulations. ACM Comput Entertain 6(4):1–35

    Article  Google Scholar 

  • Unity3D (2016) Available: http://www.unity3.com

  • Vanderbei R (2001) Linear programming: foundations and extensions. Springer, Berlin

    Book  MATH  Google Scholar 

  • Wendrich R (2009–2016) Raw shaping form finding project. www.rawshaping.com

  • Xie X, Xu K, Mitra NJ, Cohen-Or D, Gong W, Su Q, Chen B (2013) Sketch-to-design: context-based part assembly. Comput Graphics Forum 32(8):233–245

    Article  Google Scholar 

Download references

Acknowledgements

The work has been partially supported by the VISIONAIR project funded by the European Commission under Grant Agreement 262044, the French National project Co-DIVE and by the Italian National Project “Tecnologie e sistemi innovativi per la fabbrica del futuro e Made in Italy.”

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jean-Philippe Pernot.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (MP4 107715 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, Z., Giannini, F., Pernot, JP. et al. Reusing heterogeneous data for the conceptual design of shapes in virtual environments. Virtual Reality 21, 127–144 (2017). https://doi.org/10.1007/s10055-016-0302-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10055-016-0302-z

Keywords

Navigation