Skip to main content
Log in

3D dissipative motion of atoms in a strongly coupled driven cavity

  • Published:
The European Physical Journal D Aims and scope Submit manuscript

Abstract

We develop quantum models for the combined external and internal motion of atoms in a strongly coupled driven cavity mode including the transverse degrees of freedom. Using a simplified Gaussian mode function we determine the parameter regimes and prospects of 3D cooling and confinement of one or two atoms in the cavity field. Analysing the field dynamics for slow atoms traversing the cavity, we show that the spectrum of the transmitted and spontaneously scattered light contains ample information on the motional dynamics of the atom and can be nicely used to investigate the cooling properties of the system. Including several atoms in the dynamics we show how motional correlations build up by the common interaction with the cavity field. This can be looked upon as collisions at far distance and can be monitored via the transmitted field dynamics.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. H. Mabuchi et al., Opt. Lett. 21, 1393 (1996).

    Article  ADS  Google Scholar 

  2. G. Rempe, Appl. Phys. B 60, 233 (1995).

    Article  ADS  Google Scholar 

  3. P. Münstermann et al., Opt. Commun. 159, 63 (1999).

    Article  ADS  Google Scholar 

  4. Q.A. Turchette, R.J. Thompson, H.J. Kimble, Appl. Phys. B 60, S1 (1995).

    Google Scholar 

  5. D. Meschede, H. Walther, G. Mueller, Phys. Rev. Lett. 54, 551 (1985); M. Brune et al., Phys. Rev. Lett. 59, 1899 (1987).

    Article  ADS  Google Scholar 

  6. E.T. Jaynes, F.W. Cummings, Proc. IEEE 51, 89 (1963).

    Article  Google Scholar 

  7. J.P. Gordon, A. Ashkin, Phys. Rev. A 21, 1606 (1980).

    Article  ADS  Google Scholar 

  8. A.C. Doherty et al., Phys. Rev. A 56, 833 (1997).

    Article  ADS  Google Scholar 

  9. K.S. Wong, M.J. Collett, D.F. Walls, Opt. Commun. 137, 269 (1997).

    Article  ADS  Google Scholar 

  10. P. Horak et al., Phys. Rev. Lett. 79, 4974 (1997).

    Article  ADS  Google Scholar 

  11. G. Hechenblaikner et al., Phys. Rev. A 58, 3030 (1998).

    Article  ADS  Google Scholar 

  12. A.C. Doherty et al., Phys. Rev. A 57, 4804 (1998).

    Article  ADS  Google Scholar 

  13. J.-F. Roch et al., Phys. Rev. Lett. 78, 634 (1997)

    Article  ADS  Google Scholar 

  14. K.S. Wong, M.J. Collett, D.F. Walls, Opt. Commun. 137, 269 (1997).

    Article  ADS  Google Scholar 

  15. J.A. Dunningham, H.M. Wiseman, D.F. Walls, Phys. Rev. A 55, 1398 (1997).

    Article  ADS  Google Scholar 

  16. K.M. Gheri, P. Horak, H. Ritsch, J. Mod. Opt. 44, 605 (1997).

    Article  ADS  Google Scholar 

  17. F. Haake et al., Phys. Rev. Lett. 71, 995 (1993).

    Article  ADS  Google Scholar 

  18. A. Hemmerich (private communication).

  19. R. Bonifacio et al., in Coherent and Collective Interactions of Particles and Radiation Beams, Proceedings of the International School of Physics “Enrico Fermi”, Course CXXXI, edited by A. Aspect, W. Barletta, R. Bonifacio (IOS Press, Amsterdam, Oxford, Tokyo, Washington DC, 1996), pp. 285–323.

    Google Scholar 

  20. C. Cohen-Tannoudji, G. Grynberg, Opt. Commun. 96, 150 (1993).

    Article  ADS  Google Scholar 

  21. G. Morigi et al., Phys. Rev. A (in press).

  22. H.C. Nägerl et al., Appl. Phys. B 66, 603 (1998).

    Article  ADS  Google Scholar 

  23. M. Löffler, G.M. Meyer, H. Walther, Europhys. Lett. 40, 263 (1997).

    Article  ADS  Google Scholar 

  24. W. Ren, J.D. Cresser, H.J. Carmichael, Phys. Rev. A 46, 7162 (1992).

    Article  ADS  Google Scholar 

  25. J.T. Höffges et al., J. Mod. Opt. 44, 1999 (1997).

    Article  ADS  Google Scholar 

  26. J.H. Eberly, K. Wodkiewicz, J. Opt. Soc. Am. 67, 1252 (1977).

    Article  ADS  Google Scholar 

  27. C. Cohen-Tannoudji, in Fundamental Systems in Quantum Optics, Proceedings of the Les Houches Summer School, Session LIII, edited by J. Dalibard, J.-M. Raimond, J. Zinn-Justin (North-Holland, Amsterdam, 1992), pp. 1–164.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Gangl.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gangl, M., Ritsch, H. 3D dissipative motion of atoms in a strongly coupled driven cavity. Eur. Phys. J. D 8, 29–40 (2000). https://doi.org/10.1007/s10053-000-9064-x

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10053-000-9064-x

PACS

Navigation