Skip to main content

Advertisement

Log in

Whole-exome sequencing reveals PSEN1 and ATP7B combined variants as a possible cause of early-onset Lewy body dementia: a case study of genotype–phenotype correlation

  • Short Communication
  • Published:
neurogenetics Aims and scope Submit manuscript

Abstract

Dementia with Lewy bodies is a neurodegenerative disease, sharing features with Parkinson’s and Alzheimer’s diseases. We report a case of a patient dementia with Lewy bodies carrying combined PSEN1 and ATP7B mutations. A man developed dementia with Lewy bodies starting at the age of 60 years. CSF biomarkers were of Alzheimer’s disease and DaTSCAN was abnormal. Whole-exome sequencing revealed a heterozygous p.Ile408Thr PSEN1 variant and a homozygous p.Arg616Trp ATP7B variant. This case reinstates the need of considering ATP7B mutations when evaluating a patient with parkinsonism and supports p.Ile408Thr as a pathogenic PSEN1 variant.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

References

  1. Walker L, McAleese KE, Thomas AJ et al (2015) Neuropathologically mixed Alzheimer’s and Lewy body disease: burden of pathological protein aggregates differs between clinical phenotypes. Acta Neuropathol 129(5):729–748

    Article  CAS  PubMed  Google Scholar 

  2. McKeith IG, Boeve BF, Dickson DW et al (2017) Diagnosis and management of dementia with Lewy bodies: fourth consensus report of the DLB Consortium. Neurology 89(1):88–100

    Article  PubMed  PubMed Central  Google Scholar 

  3. Berg D, Postuma RB, Bloem B et al (2014) Time to redefine PD? Introductory statement of the MDS Task Force on the definition of Parkinson’s disease. Mov Disord: Off J Mov Disord Soc 29(4):454–462

    Article  Google Scholar 

  4. Orme T, Guerreiro R, Bras J (2018) The genetics of dementia with Lewy bodies: current understanding and future directions. Curr Neurol Neurosci Rep 18(10):67

    Article  PubMed  PubMed Central  Google Scholar 

  5. Guerreiro R, Ross OA, Kun-Rodrigues C et al (2018) Investigating the genetic architecture of dementia with Lewy bodies: a two-stage genome-wide association study. Lancet Neurol 17(1):64–74

    Article  PubMed  Google Scholar 

  6. Geiger JT, Ding J, Crain B et al (2016) Next-generation sequencing reveals substantial genetic contribution to dementia with Lewy bodies. Neurobiol Dis 94:55–62

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Guerreiro R, Escott-Price V, Hernandez DG et al (2019) Heritability and genetic variance of dementia with Lewy bodies. Neurobiol Dis 127:492–501

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. McKenna A, Hanna M, Banks E et al (2010) The Genome Analysis Toolkit: a MapReduce framework for analyzing next-generation DNA sequencing data. Genome Res 20(9):1297–1303

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Van der Auwera GA, Carneiro MO, Hartl C et al (2013) From FastQ data to high confidence variant calls: the Genome Analysis Toolkit best practices pipeline. Curr Protoc Bioinforma 43:11.10.1-11.10.33

    Article  Google Scholar 

  10. Cingolani P, Platts A, le Wang L et al (2012) A program for annotating and predicting the effects of single nucleotide polymorphisms, SnpEff: SNPs in the genome of Drosophila melanogaster strain w1118; iso-2; iso-3. Fly 6(2):80–92

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Liu X, Jian X, Boerwinkle E (2013) dbNSFP v2.0: a database of human non-synonymous SNVs and their functional predictions and annotations. Hum Mutat 34(9):E2393-2402

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Patel ZH, Kottyan LC, Lazaro S et al (2014) The struggle to find reliable results in exome sequencing data: filtering out Mendelian errors. Front Genet 5:16

    Article  PubMed  PubMed Central  Google Scholar 

  13. Robinson PN, Kohler S, Oellrich A et al (2014) Improved exome prioritization of disease genes through cross-species phenotype comparison. Genome Res 24(2):340–348

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Kohler S, Carmody L, Vasilevsky N et al (2019) Expansion of the Human Phenotype Ontology (HPO) knowledge base and resources. Nucleic Acids Res 47(D1):D1018–D1027

    Article  PubMed  Google Scholar 

  15. Mattsson N, Andreasson U, Persson S et al (2011) The Alzheimer’s Association external quality control program for cerebrospinal fluid biomarkers. Alzheimers Dement: J Alzheimers Assoc 7(4):386-395.e386

    Article  CAS  Google Scholar 

  16. Baldeiras IE, Ribeiro MH, Pacheco P et al (2009) Diagnostic value of CSF protein profile in a Portuguese population of sCJD patients. J Neurol 256(9):1540–1550

    Article  PubMed  Google Scholar 

  17. Kapaki E, Kilidireas K, Paraskevas GP, Michalopoulou M, Patsouris E (2001) Highly increased CSF tau protein and decreased beta-amyloid (1–42) in sporadic CJD: a discrimination from Alzheimer’s disease? J Neurol Neurosurg Psychiatry 71(3):401–403

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Jack CR Jr, Bennett DA, Blennow K et al (2018) NIA-AA Research Framework: toward a biological definition of Alzheimer’s disease. Alzheimers Dement 14(4):535–562

    Article  PubMed  PubMed Central  Google Scholar 

  19. Tedde A, Bartoli A, Piaceri I et al (2016) Novel presenilin 1 mutation (Ile408Thr) in an Italian family with late-onset Alzheimer’s disease. Neurosci Lett 610:150–153

    Article  CAS  PubMed  Google Scholar 

  20. Caca K, Ferenci P, Kuhn HJ et al (2001) High prevalence of the H1069Q mutation in East German patients with Wilson disease: rapid detection of mutations by limited sequencing and phenotype-genotype analysis. J Hepatol 35(5):575–581

    Article  CAS  PubMed  Google Scholar 

  21. Savica R, Grossardt BR, Bower JH, Boeve BF, Ahlskog JE, Rocca WA (2013) Incidence of dementia with Lewy bodies and Parkinson disease dementia. JAMA Neurol 70(11):1396–1402

    Article  PubMed  PubMed Central  Google Scholar 

  22. Wenisch E, De Tassigny A, Trocello JM, Beretti J, Girardot-Tinant N, Woimant F (2013) Cognitive profile in Wilson’s disease: a case series of 31 patients. Rev Neurol 169(12):944–949

    Article  CAS  PubMed  Google Scholar 

  23. Iwanski S, Seniow J, Lesniak M, Litwin T, Czlonkowska A (2015) Diverse attention deficits in patients with neurologically symptomatic and asymptomatic Wilson’s disease. Neuropsychology 29(1):25–30

    Article  PubMed  Google Scholar 

  24. Shanmugavel KP, Kumar R, Li Y, Wittung-Stafshede P (2019) Wilson disease missense mutations in ATP7B affect metal-binding domain structural dynamics. Biometals: Int J Role Metal Ions Biol Biochem Med 32(6):875–885

    Article  CAS  Google Scholar 

  25. Huster D, Kuhne A, Bhattacharjee A et al (2012) Diverse functional properties of Wilson disease ATP7B variants. Gastroenterology 142(4):947-956.e945

    Article  CAS  PubMed  Google Scholar 

  26. Gourdon P, Sitsel O, Lykkegaard Karlsen J, Birk Moller L, Nissen P (2012) Structural models of the human copper P-type ATPases ATP7A and ATP7B. Biol Chem 393(4):205–216

    Article  CAS  PubMed  Google Scholar 

  27. Curtis D, Durkie M, Balac P et al (1999) A study of Wilson disease mutations in Britain. Hum Mutat 14(4):304–311

    Article  CAS  PubMed  Google Scholar 

  28. Guerreiro R, Sassi C, Gibbs JR, Edsall C, Hernandez D, Brown K, Lupton MK, Parkinnen L, Ansorge O, Hodges A, Ryten M, for the UK Brain Expression Consortium, Tienari PJ, Van Deerlin VM, Trojanowski JQ, MorganK, Powell J, Singleton A, Hardy J, Bras J (2018) A comprehensive assessment of benign genetic variability for neurodegenerative disorders. bioRxiv 270686. https://doi.org/10.1101/270686

  29. Jozwiak K, Zekanowski C, Filipek S (2006) Linear patterns of Alzheimer’s disease mutations along alpha-helices of presenilins as a tool for PS-1 model construction. J Neurochem 98(5):1560–1572

    Article  CAS  PubMed  Google Scholar 

  30. Laudon H, Hansson EM, Melen K et al (2005) A nine-transmembrane domain topology for presenilin 1. J Biol Chem 280(42):35352–35360

    Article  CAS  PubMed  Google Scholar 

  31. Aldudo J, Bullido MJ, Valdivieso F (1999) DGGE method for the mutational analysis of the coding and proximal promoter regions of the Alzheimer’s disease presenilin-1 gene: two novel mutations. Hum Mutat 14(5):433–439

    Article  CAS  PubMed  Google Scholar 

  32. Sherrington R, Rogaev EI, Liang Y et al (1995) Cloning of a gene bearing missense mutations in early-onset familial Alzheimer’s disease. Nature 375(6534):754–760

    Article  CAS  PubMed  Google Scholar 

  33. Southon A, Greenough MA, Ganio G, Bush AI, Burke R, Camakaris J (2013) Presenilin promotes dietary copper uptake. PLoS One 8(5):e62811

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Yamazaki Y, Zhao N, Caulfield TR, Liu CC, Bu G (2019) Apolipoprotein E and Alzheimer disease: pathobiology and targeting strategies. Nat Rev Neurol 15(9):501–518

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Tsuang D, Leverenz JB, Lopez OL et al (2013) APOE epsilon4 increases risk for dementia in pure synucleinopathies. JAMA Neurol 70(2):223–228

    Article  PubMed  PubMed Central  Google Scholar 

  36. Sando SB, Melquist S, Cannon A et al (2008) APOE epsilon 4 lowers age at onset and is a high risk factor for Alzheimer’s disease; a case control study from central Norway. BMC Neurol 8:9

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Funding

Research reported in this publication was supported by the National Institute on Aging of the National Institutes of Health under Award Number R01AG067426. The content is solely the responsibility of the authors and does not necessarily represent the official views of the National Institutes of Health.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Miguel Tábuas-Pereira.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher's note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tábuas-Pereira, M., Guerreiro, R., Kun-Rodrigues, C. et al. Whole-exome sequencing reveals PSEN1 and ATP7B combined variants as a possible cause of early-onset Lewy body dementia: a case study of genotype–phenotype correlation. Neurogenetics 23, 279–283 (2022). https://doi.org/10.1007/s10048-022-00699-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10048-022-00699-0

Keywords

Navigation