Skip to main content
Log in

Increased transcript diversity: novel splicing variants of Machado–Joseph Disease gene (ATXN3)

  • ORIGINAL ARTICLE
  • Published:
neurogenetics Aims and scope Submit manuscript

Abstract

Machado–Joseph disease (MJD) is a late-onset neurodegenerative disorder that presents clinical heterogeneity not completely explained by its causative mutation. MJD is caused by an expansion of a CAG tract at exon 10 of the ATXN3 gene (14q32.1), which encodes for ataxin-3. The main goal of this study was to analyze the occurrence of alternative splicing at the ATXN3 gene, by sequencing a total of 415 cDNAs clones (from 20 MJD patients and 14 controls). Two novel exons are described for the ATXN3 gene. Fifty-six alternative splicing variants, generated by four types of splicing events, were observed. From those variants, 50 were not previously described, and 26 were only found in MJD patients samples. Most of the variants (85.7%) present frameshift, which leads to the appearance of premature stop codons. Thirty-seven of the observed variants constitute good targets to nonsense-mediated decay, the remaining are likely to be translated into at least 20 different isoforms. The presence of ataxin-3 domains was assessed, and consequences of domain disruption are discussed. The present study demonstrates high variability in the ATXN3 gene transcripts, providing a basis for further investigation on the contribution of alternative splicing to the MJD pathogenic process, as well as to the larger group of the polyglutamine disorders.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Coutinho P (1992) Doença de Machado-Joseph: Tentativa de Definição. PhD Dissertation, Instituto de Ciências Biomédicas Abel Salazar, Porto

  2. Coutinho P, Andrade C (1978) Autosomal dominant system degeneration in Portuguese families of the Azores Islands. Neurology 28:703–709

    CAS  PubMed  Google Scholar 

  3. Takiyama Y, Nishizawa M, Tanaka H, Kawashima S, Sakamoto H, Karube Y, Shimazaki H, Soutome M, Endo K, Ohta S et al (1993) The gene for Machado-Joseph disease maps to human chromosome 14q. Nat Genet 4:300–304

    Article  CAS  PubMed  Google Scholar 

  4. Kawaguchi Y, Okamoto T, Taniwaki M, Aizawa M, Inoue M, Katayama S, Kawakami H, Nakamura S, Nishimura M, Akiguchi I et al (1994) CAG expansions in a novel gene for Machado-Joseph disease at chromosome 14q32.1. Nat Genet 8:221–228

    Article  CAS  PubMed  Google Scholar 

  5. Ichikawa Y, Goto J, Hattori M, Toyoda A, Ishii K, Jeong SY, Hashida H, Masuda N, Ogata K, Kasai F et al (2001) The genomic structure and expression of MJD, the Machado-Joseph disease gene. J Hum Genet 46:413–422

    Article  CAS  PubMed  Google Scholar 

  6. Maciel P, Costa MC, Ferro A, Rousseau M, Santos CS, Gaspar C, Barros J, Rouleau GA, Coutinho P, Sequeiros J (2001) Improvement in the molecular diagnosis of Machado-Joseph disease. Arch Neurol 58:1821–1827

    Article  CAS  PubMed  Google Scholar 

  7. Maciel P, Gaspar C, DeStefano AL, Silveira I, Coutinho P, Radvany J, Dawson DM, Sudarsky L, Guimarães J, Loureiro JE et al (1995) Correlation between CAG repeat length and clinical features in Machado-Joseph disease. Am J Hum Genet 57:54–61

    CAS  PubMed  Google Scholar 

  8. Tzvetkov N, Breuer P (2007) Josephin domain-containing proteins from a variety of species are active de-ubiquitination enzymes. Biol Chem 388:973–978

    Article  CAS  PubMed  Google Scholar 

  9. Riess O, Rüb U, Pastore A, Bauer P, Schöls L (2008) SCA3: neurological features, pathogenesis and animal models. Cerebellum 7:125–137

    Article  CAS  PubMed  Google Scholar 

  10. Paulson HL, Das SS, Crino PB, Perez MK, Patel SC, Gotsdiner D, Fischbeck KH, Pittman RN (1997) Machado-Joseph disease gene product is a cytoplasmic protein widely expressed in brain. Ann Neurol 41:453–462

    Article  CAS  PubMed  Google Scholar 

  11. Mauri PL, Riva M, Ambu D, De Palma A, Secundo F, Benazzi L, Valtorta M, Tortora P, Fusi P (2006) Ataxin-3 is subject to autolytic cleavage. FEBS J 273:4277–4286

    Article  CAS  PubMed  Google Scholar 

  12. Black DL (2003) Mechanisms of alternative pre-messenger RNA splicing. Annu Rev Biochem 72:291–336

    Article  CAS  PubMed  Google Scholar 

  13. Hiller M, Platzer M (2008) Widespread and subtle: alternative splicing at short-distance tandem sites. Trends Genet 24:246–255

    Article  CAS  PubMed  Google Scholar 

  14. Sorek R, Shamir R, Ast G (2004) How prevalent is functional alternative splicing in the human genome? Trends Genet 20:68–71

    Article  CAS  PubMed  Google Scholar 

  15. Hall TA (1999) BioEdit: a user-friendly biological sequence alignment editor and analysis program for Windows 95/98/NT. Nucleic Acids Symp Ser 41:95–98

    CAS  Google Scholar 

  16. Castrignano T, Rizzi R, Talamo IG, De Meo PD, Anselmo A, Bonizzoni P, Pesole G (2006) ASPIC: a web resource for alternative splicing prediction and transcript isoforms characterization. Nucleic Acids Res 34:W440–W443

    Article  CAS  PubMed  Google Scholar 

  17. Sali A, Potterton L, Yuan F, van Vlijmen H, Karplus M (1995) Evaluation of comparative protein modelling by MODELLER. Proteins 23:318–326

    Article  CAS  PubMed  Google Scholar 

  18. Russell RB, Barton GJ (1992) Multiple protein sequence alignment from tertiary structure comparison: assignment of global and residue confidence levels. Proteins 14:309–323

    Article  CAS  PubMed  Google Scholar 

  19. Gao K, Masuda A, Matsuura T, Ohno K (2008) Human branch point consensus sequence is yUnAy. Nucleic Acids Res 36(7):2257–2267

    Article  CAS  PubMed  Google Scholar 

  20. Maquat LE (2005) Nonsense-mediated mRNA decay in mammals. J Cell Sci 118(Pt 9):1773–1776

    Article  CAS  PubMed  Google Scholar 

  21. Gales L, Cortes L, Almeida C, Melo CV, Costa M do C, Maciel P, Clarke DT, Damas AM, Macedo-Ribeiro S (2005) Towards a structural understanding of the fibrillization pathway in Machado-Joseph’s disease: trapping early oligomers of non-expanded ataxin-3. J Mol Biol 353:642–654

    Article  CAS  PubMed  Google Scholar 

  22. Albrecht M, Golatta M, Wüllner U, Lengauer T (2004) Structural and functional analysis of ataxin-2 and ataxin-3. Eur J Biochem 271:3155–3170

    Article  CAS  PubMed  Google Scholar 

  23. Sahba S, Nechiporuk A, Figueroa KP, Nechiporu T, Pulst SM (1998) Genomic structure of the human gene for spinocerebellar ataxia type 2 (SCA2) on chromosome 12q24.1. Genomics 47:359–364

    Article  CAS  PubMed  Google Scholar 

  24. Affaitati A, de Cristofaro T, Feliciello A, Varrone S (2001) Identification of alternative splicing of spinocerebellar ataxia type 2 gene. Gene 267:89–93

    Article  CAS  PubMed  Google Scholar 

  25. Tadokoro K, Yamazaki-Inoue M, Tachibana M, Fujishiro M, Nagao K, Toyoda M, Ozaki M, Ono M, Miki N, Miyashita T, Yamada M (2005) Frequent occurrence of protein isoforms with or without a single amino acid residue by subtle alternative splicing: the case of Gln in DRPLA affects subcellular localization of the products. J Hum Genet 50:382–394

    Article  CAS  PubMed  Google Scholar 

  26. Tsunemi T, Ishikawa K, Jin H, Mizusawa H (2008) Cell-type-specific alternative splicing in spinocerebellar ataxia type 6. Neurosci Lett 447:78–81

    Article  CAS  PubMed  Google Scholar 

  27. Einum DD, Clark AM, Townsend JJ, Ptacek LJ, Fu YH (2003) A novel central nervous system-enriched spinocerebellar ataxia type 7 gene product. Arch Neurol 60:97–103

    Article  PubMed  Google Scholar 

  28. Katti MV, Sami-Subbu R, Ranjekar PK, Gupta VS (2000) Amino acid repeat patterns in protein sequences: their diversity and structural-functional implications. Protein Sci 9:1203–1209

    Article  CAS  PubMed  Google Scholar 

  29. Dorsman JC, Pepers B, Langenberg D, Kerkdijk H, Ijszenga M, den Dunnen JT, Roos RA, van Ommen GJ (2002) Strong aggregation and increased toxicity of polyleucine over polyglutamine stretches in mammalian cells. Hum Mol Genet 11:1487–1496

    Article  CAS  PubMed  Google Scholar 

  30. Toulouse A, Au-Yeung F, Gaspar C, Roussel J, Dion P, Rouleau GA (2005) Ribosomal frameshifting on MJD-1 transcripts with long CAG tracts. Hum Mol Genet 14:2649–2660

    Article  CAS  PubMed  Google Scholar 

  31. Gaspar C, Jannatipour M, Dion P, Laganière J, Sequeiros J, Brais B, Rouleau GA (2000) CAG tract of MJD-1 may be prone to frameshifts causing polyalanine accumulation. Hum Mol Genet 9:1957–1966

    Article  CAS  PubMed  Google Scholar 

  32. Bettencourt C, Silva-Fernandes A, Montiel R, Santos C, Maciel P, Lima M (2007) Triplet repeats: features, dynamics and evolutionary mechanisms. In: Santos C, Lima M (eds) Recent advances in molecular biology and evolution: applications to biological anthropology. Research Signpost, Kerala, pp 83–114

    Google Scholar 

  33. Nijman SM, Luna-Vargas MP, Velds A, Brummelkamp TR, Dirac AM, Sixma TK, Bernards R (2005) A genomic and functional inventory of deubiquitinating enzymes. Cell 123:773–786

    Article  CAS  PubMed  Google Scholar 

  34. Rodrigues AJ, Coppola G, Santos C, Costa M do C, Ailion M, Sequeiros J, Geschwind DH, Maciel P (2007) Functional genomics and biochemical characterization of the C. elegans orthologue of the Machado-Joseph disease protein ataxin-3. FASEB J 21:1126–1136

    Article  CAS  PubMed  Google Scholar 

  35. Todi SV, Laco MN, Winborn BJ, Travis SM, Wen HM, Paulson HL (2007) Cellular turnover of the polyglutamine disease protein ataxin-3 is regulated by its catalytic activity. J Biol Chem 282:29348–29358

    Article  CAS  PubMed  Google Scholar 

  36. Warrick JM, Morabito LM, Bilen J, Gordesky-Gold B, Faust LZ, Paulson HL, Bonini NM (2005) Ataxin-3 suppresses polyglutamine neurodegeneration in Drosophila by a ubiquitin-associated mechanism. Mol Cell 18:37–48

    Article  CAS  PubMed  Google Scholar 

  37. Goti D, Katzen SM, Mez J, Kurtis N, Kiluk J, Ben-Haïem L, Jenkins NA, Copeland NG, Kakizuka A, Sharp AH et al (2004) A mutant ataxin-3 putative-cleavage fragment in brains of Machado-Joseph disease patients and transgenic mice is cytotoxic above a critical concentration. J Neurosci 24:10266–10279

    Article  CAS  PubMed  Google Scholar 

  38. Lin X, Antalffy B, Kang D, Orr HT, Zoghbi HY (2000) Polyglutamine expansion down-regulates specific neuronal genes before pathologic changes in SCA1. Nat Neurosci 3:157–163

    Article  CAS  PubMed  Google Scholar 

  39. Li F, Macfarlan T, Pittman RN, Chakravarti D (2002) Ataxin-3 is a histone-binding protein with two independent transcriptional corepressor activities. J Biol Chem 277:45004–45012

    Article  CAS  PubMed  Google Scholar 

  40. Le Texier V, Riethoven JJ, Kumanduri V, Gopalakrishnan C, Lopez F, Gautheret D, Thanaraj TA (2006) AltTrans: transcript pattern variants annotated for both alternative splicing and alternative polyadenylation. BMC Bioinformatics 7:169

    Article  PubMed  CAS  Google Scholar 

  41. ENCODE Project Consortium, Birney E, Stamatoyannopoulos JA, Dutta A, Guigó R, Gingeras TR, Margulies EH, Weng Z, Snyder M, Dermitzakis ET et al (2007) Identification and analysis of functional elements in 1% of the human genome by the ENCODE pilot project. Nature 447:799–816

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This work was supported by “Projecto Regional Integrado, DMJ (PRI-DMJ)” (funded by Regional Government of the Azores), and “Transcriptional variation of the ATXN3 gene as modulator of the clinical heterogeneity in Machado–Joseph disease (MJD)” (PIC/IC/83074/2007, funded by “Fundação para a Ciência e a Tecnologia”, FCT). C.B. (SFRH/BD/21875/2005) is a recipient of a PhD grant, and C.S. (SFRH/BPD/20944/2004) and M.C.C. (SFRH/BPD/28560/2006) are postdoctoral fellows from FCT.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Conceição Bettencourt.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bettencourt, C., Santos, C., Montiel, R. et al. Increased transcript diversity: novel splicing variants of Machado–Joseph Disease gene (ATXN3). Neurogenetics 11, 193–202 (2010). https://doi.org/10.1007/s10048-009-0216-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10048-009-0216-y

Keywords

Navigation