Skip to main content

Advertisement

Log in

Molecular mechanism of rigid spine with muscular dystrophy type 1 caused by novel mutations of selenoprotein N gene

  • Original Article
  • Published:
Neurogenetics Aims and scope Submit manuscript

Abstract

Mutations of selenoprotein N, 1 gene (SEPN1) cause rigid spine with muscular dystrophy type 1 (RSMD1), multiminicore disease, and desmin-related myopathy. We found two novel SEPN1 mutations in two Japanese patients with RSMD1. To clarify the pathomechanism of RSMD1, we performed immunohistochemical studies using a newly developed antibody for selenoprotein N. Selenoprotein N was diffusely distributed in the cytoplasm of the control muscle, but was reduced and irregularly expressed in the cytoplasm of a patient with RSMD1. The expression pattern was very similar to that of calnexin, a transmembrane protein of the endoplasmic reticulum. Selenoprotein N seems to be an endoplasmic reticulum glycoprotein, and loss of this protein leads to disturbance of muscular function. One of the families had the SEPN1 homozygous mutation in the initiation codon 1_2 ins T in exon 1 and showed truncated protein expression. The other had a homozygous 20-base duplication mutation at 80 (80_99dup, frameshift at R27) which, in theory, should generate many nonsense mutations including TGA. These nonsense mutations are premature translation termination codons and they degrade immediately by the process of nonsense-mediated decay (NMD). However, truncated selenoprotein N was also expressed. A possible mechanism behind this observation is that SEPN1 mRNAs may be resistant to NMD. We report on the possible molecular mechanism behind these mutations in SEPN1. Our study clarifies molecular mechanisms of this muscular disorder.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Dubowitz V (1965) Pseudo_muscular dystrophy. Proceedings of the Third Symposium: Research Committee of the Muscular Dystrophy Group of Great Britain. Pitman Medical, London, pp 57–73

    Google Scholar 

  2. Dubowitz V (1973) Rigid spine syndrome: a muscle syndrome in search of a name. Proc R Soc Med 66:219–220

    PubMed  CAS  Google Scholar 

  3. Bonne G, Di Barletta MR, Varnous S et al (1999) Mutations in the gene encoding lamin A/C cause autosomal dominant Emery–Dreifuss muscular dystrophy. Nat Genet 21:285–288

    Article  PubMed  CAS  Google Scholar 

  4. Taylor J, Sewry CA, Dubowitz V, Muntoni F (1998) Early onset, autosomal recessive muscular dystrophy with Emery–Dreifuss phenotype and normal emerin expression. Neurology 51:1116–1120

    PubMed  CAS  Google Scholar 

  5. Merlini L, Mattutini P, Bonfiglioli S et al (1987) Non-progressive central core disease with severe congenital scoliosis: a case report. Dev Med Child Neurol 29:106–109

    Article  PubMed  CAS  Google Scholar 

  6. Topaloglu H, Gosgus S, Yalaz K et al (1994) Two siblings with nemaline myopathy presenting with rigid spine syndrome. Neuromuscul Disord 4:263–267

    Article  PubMed  CAS  Google Scholar 

  7. Merlini L, Granata C, Ballestrazzi A, Marini ML (1989) Rigid spine syndrome and rigid spine sign in myopathies. J Child Neurol 4:274–282

    Article  PubMed  CAS  Google Scholar 

  8. Flanigan KM, Kerr L, Bromberg MB et al (2000) Congenital muscular dystrophy with rigid spine syndrome: a clinical, pathological, radiological, and genetic study. Ann Neurol 47:152–161

    Article  PubMed  CAS  Google Scholar 

  9. Morita H, Kondo K, Hoshino K et al (1990) Rigid spine syndrome with respiratory failure. J Neurol Neurosurg Psychiatry 53:782–784

    Article  PubMed  CAS  Google Scholar 

  10. Ras GJ, van Staden M, Schultz C et al (1994) Respiratory manifestations of rigid spine syndrome. Am J Respir Crit Care Med 150:540–546

    PubMed  CAS  Google Scholar 

  11. Dubowitz V (1997) 50th ENMC international workshop: congenital muscular dystrophy, 28 February 1997 to 2 March 1997, Naarden, The Netherlands. Neuromuscul Disord 7:539–547

    PubMed  CAS  Google Scholar 

  12. Moghadaszadeh B, Desguerre I, Topaloglu H et al (1998) Identification of a new locus for a peculiar form of congenital muscular dystrophy with early rigidity of the spine on chromosome 1p35–36. Am J Hum Genet 62:1439–1445

    Article  PubMed  CAS  Google Scholar 

  13. Moghadaszadeh B, Petit N, Jaillard C et al (2001) Mutation in SEPN1 cause congenital muscular dystrophy with spinal rigidity and restrictive respiratory syndrome. Nat Genet 29:17–18

    Article  PubMed  CAS  Google Scholar 

  14. Petit N, Lescure A, Rederstorff M et al (2003) Selenoprotein N: an endoplasmic reticulum glycoprotein with early developmental expression pattern. Hum Mol Genet 12:1045–1053

    Article  PubMed  CAS  Google Scholar 

  15. Boerkoel CF, Takashima H, Stankiewicz P et al (2001) Periaxin mutations cause recessive Dejerine–Sottas neuropathy. Am J Hum Genet 68:325–333

    Article  PubMed  CAS  Google Scholar 

  16. den Dunnen JT, Antonarakis SE (2000) Mutation nomenclature extensions and suggestions to describe complex mutations: a discussion. Hum Mutat 15:7–12

    Article  Google Scholar 

  17. Hsu SM, Raine L, Fangen H (1981) Use of avidin–biotin peroxidase complex (ABC) in immunoperoxidase techniques: a comparison between ABC and unlabelled antibody (PAP) procedures. J Histochem Cytochem 29:577–580

    PubMed  CAS  Google Scholar 

  18. Higuchi I, Niiyama T, Uchida Y et al (1999) Multiple episodes of thrombosis in a patient with Becker muscular dystrophy with marked expression of utrophin on the muscle cell membrane. Acta Neuropathol (Berl) 98:313–316

    Article  CAS  Google Scholar 

  19. Ferreiro A, Quijano-Roy S et al (2002) Mutations of the selenoprotein N gene, which is implicated in rigid spine muscular dystrophy, cause the classical phenotype of multiminicore disease: reassessing the nosology of early-onset myopathies. Am J Hum Genet 71:739–749

    Article  PubMed  Google Scholar 

  20. Ferreiro A, Ceuterick-de Groote C et al (2004) Desmin-related myopathy with Mallory body-like inclusions is caused by mutations of the selenoprotein N gene. Ann Neurol 55:676–686

    Article  PubMed  CAS  Google Scholar 

  21. Tajsharghi H, Darin N, Tulinius M et al (2005) Early onset myopathy with a novel mutation in the Selenoprotein N gene (SEPN1). Neuromuscul Disord 15:299–302

    Article  PubMed  Google Scholar 

  22. Lescure A, Gautheret D, Carbon P et al (1999) Novel selenoproteins identified in silico and in vivo by using a conserved RNA steuctural motif. J Biol Chem 274:38147–38154

    Article  PubMed  CAS  Google Scholar 

  23. Pittis MG, Ricci V, Guerci VI, Marcais et al (2004) C Acid sphingomyelinase: identification of nine novel mutations among Italian Niemann Pick type B patients and characterization of in vivo functional in-frame start codon. Hum Mutat 24:186–187

    Article  PubMed  CAS  Google Scholar 

  24. Kozak M (1986) Point mutations define a sequence flanking the AUG initiator codon that modulates translation by eukaryotic ribosomes. Cell 44:283–292

    Article  PubMed  CAS  Google Scholar 

  25. Kozak M (1997) Recognition of AUG and alternative initiator codons is augmented by G in position +4 but is not generally affected by the nucleotides in positions +5 and +6. EMBO J 16:2482–2492

    Article  PubMed  CAS  Google Scholar 

  26. Kozak M (2005) Regulation of translation via mRNA structure in prokaryotes and eukaryotes. Gene 361:13–37

    Article  PubMed  CAS  Google Scholar 

  27. Inoue K, Khajavi M, Ohyama T et al (2004) Molecular mechanism for distinct neurological phenotypes conveyed by allelic truncating mutations. Nat Genet 36:361–369

    Article  PubMed  CAS  Google Scholar 

  28. Lei XG, Evenson JK, Thompson KM, Sunde RA (1995) Glutathione peroxidase and phospholipid hydroperoxide glutathione peroxidase are differentially regulated in rats by dietary selenium. J Nutr 125:1438–1446

    PubMed  CAS  Google Scholar 

  29. Howard MT, Aggarwal G, Anderson CB et al (2005) Recoding elements located adjacent to a subset of eukaryal selenocysreine-specifying UGA codons. EMBO J 24:1596–1607

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgements

We thank the families described for their cooperation. We also thank Ms. S. Taniguchi and N. Hirata of Kagoshima University for their excellent technical assistance. This study was supported in part by grants from the Muscular dystrophy and Neuropathy of the Ministry of Health and Welfare of Japan to Y. O., H.T., I. H., M.S., M.O., and K.A., from the Kato foundation, Kanae Foundation and the Nakabayashi Trust for ALS research to H.T., and Scientific Research grant from the Ministry of Education, Culture, Sports, Science and Technology of Japan to M.N., H.T., I.H. W.M., and K.A.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hiroshi Takashima.

Electronic database information

Electronic database information

Accession numbers and URLs for data in this article are as follows:

  1. 1.

    Online Mendelian Inheritance in Man (OMIM): http://www.ncbi.nlm.nih.gov/entrez/query.fcgi? db=OMIM (for SEPN1 [MIM *606210], LMNA [MIM *150330],)

  2. 2.

    GenBank: http://www.ncbi.nih.gov/Genbank (for human SEPN1 mRNA sequence [NM_020451], LMNA mRNA sequence [NM_170707])

  3. 3.

    BLAST: http://www.ncbi.nlm.nih.gov/BLAST/

  4. 4.

    Primer v3 program, Whitehead Institute for Biomedical Research: http://frodo.wi.mit.edu/cgi-bin/primer3/primer3_www.cgi

Rights and permissions

Reprints and permissions

About this article

Cite this article

Okamoto, Y., Takashima, H., Higuchi, I. et al. Molecular mechanism of rigid spine with muscular dystrophy type 1 caused by novel mutations of selenoprotein N gene. Neurogenetics 7, 175–183 (2006). https://doi.org/10.1007/s10048-006-0046-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10048-006-0046-0

Keywords

Navigation