Skip to main content
Log in

A parametric study on mathematical formulation and geometrical construction of a stentless aortic heart valve

  • Original Article
  • Artificial Valve
  • Published:
Journal of Artificial Organs Aims and scope Submit manuscript

Abstract

This study presents a novel methodology for constructing an accurate geometrical model of a stentless aortic heart valve replacement (AVR). The main objective is to propose an optimized AVR model that can be used as an ideal scaffold for tissue engineering applications or a biocompatible prosthesis. Current techniques available for creating heart valve geometry, including leaflets, are very complicated and are not precise, due to the extensive use of various complicated parameters. This paper introduces an alternative design procedure that uses limited and effective numbers of controlling parameters to construct the whole valve including the sinus of valsalva. In doing so the hyperbolic curves for multithickness leaflets are used and a 3D elliptical formulation is incorporated for the surface geometry of the sinus of valsalva. Still, the feasibility and the precision of the mathematical method are established by performing standard deviation analysis on the constructed surfaces. The surface fitting residuals are found as low as error 0.2351 mm with standard deviation of 8.83e−5 over the commissural lines. Preliminary validation to the proposed AVR model performance is achieved by testing the generated AVR model under quasi static condition while obtaining the mesh independent setup. The numerical model showed a rapid response of the leaflets to the transvalvular pressure where adequate values of stress are measured over the commissural lines.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Gott VL, Alejo DE, Cameron DE. Mechanical heart valves: 50 years of evolution. Ann Thorac Surg. 2003;76(6):S2230–9.

    Article  PubMed  Google Scholar 

  2. Desai ND, Christakis GT. Bioprosthetic aortic valve replacement: stented pericardial and porcine valves. In: Cardiac surgery in the adult. New York: McGraw-Hill Professional; 2008. p. 867–94.

  3. Emery RW, Emery AM, Knutsen A, Raikar GV. Aortic valve replacement with a mechanical cardiac valve prosthesis. In: Cardiac surgery in the adult. New York: McGraw-Hill Professional: 2008. p. 841–56.

  4. Mihaljevic TI, Sayeed MR, Stamou SC, Paul SI. Pathophysiology of aortic valve disease. In: Cardiac surgery in the adult 2008. New York: McGraw-Hill Professional, 2008. p. 825–40.

  5. Thubrikar MJ. The aortic valve. Boca Raton: CRC Press. 1990. p. 221.

  6. Labrosse MR, Beller CJ, Robicsek F, Thubrikar MJ. Geometric modeling of functional trileaflet aortic valves: development and clinical applications. J Biomech. 2006;39(14):2665–72.

    Article  PubMed  Google Scholar 

  7. Mackay TG, Wheatley DJ, Bernacca GM, Fisher AC, Hindle CS. New polyurethane heart valve prosthesis: design, manufacture and evaluation. Biomaterials. 1996;17(19):1857–63.

    Article  PubMed  CAS  Google Scholar 

  8. Leat ME, Fisher J. Comparative-study of the function of the abiomed polyurethane heart-valve for use in left-ventricular assist devices. J Biomed Eng. 1993;15(6):516–20.

    Article  PubMed  CAS  Google Scholar 

  9. Leat ME, Fisher J. A synthetic leaflet heart-valve with improved opening characteristics. Med Eng Phys. 1994;16(6):470–6.

    Article  PubMed  CAS  Google Scholar 

  10. Jiang HJ, Campbell G, Boughner D, Wan WK, Quantz M. Design and manufacture of a polyvinyl alcohol (PVA) cryogel tri-leaflet heart valve prosthesis. Med Eng Phys. 2004;26(4):269–77.

    Article  PubMed  Google Scholar 

  11. Jiang HJ, Campbell G, Xi FF. Measurement and reconstruction of the leaflet geometry for a pericardial artificial heart valve. Med Eng Phys. 2005;27(2):175–80.

    Article  PubMed  Google Scholar 

  12. Jiang HJ, Campbell G, Canas R. Leaflet geometry extraction and parametric representation of a pericardial artificial heart valve. In: Proceedings of the Institution of Mechanical Engineers Part H-Journal of Engineering in Medicine, 2005. 219(H:2)143–52.

  13. De Hart J, Peters GWM, Schreurs PJG, Baaijens FPT. Collagen fibers reduce stresses and stabilize motion of aortic valve leaflets during systole. J Biomech. 2004;37(3):303–11.

    Article  PubMed  Google Scholar 

  14. Kouhi E. An advanced fluid structure interaction study of tri-leaflet aortic heart valve. In: FEIS. Australia: Swinburne University of Technology 2012.

  15. Korn GA. Mathematical handbook for scientists and engineers: definitions, theorems, and formulas for reference and review. 2000.

  16. Polyanin AD, Manzhirov AV. Handbook of mathematics for engineers and scientists. Boca Raton: CRC Press. 2006.

  17. Dasi LP, Simon HA, Sucosky P, Yoganathan AP. Fluid mechanics of artificial heart valves. Clin Exp Pharmacol Physiol. 2009;36(2):225–37.

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  18. Haj-Ali R, Dasi LP, Kim HS, Choi J, Leo HW, Yoganathan AP. Structural simulations of prosthetic tri-leaflet aortic heart valves. J Biomech. 2008;41(7):1510–9.

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Esfandyar Kouhi.

Appendices

Appendix 1

$$ \begin{gathered} A = \left[ {\begin{array}{*{20}c} {\sum\limits_{i = 1}^{m} {x_{i}^{ 4} } \, } & {\sum\limits_{i = 1}^{m} {x_{i}^{ 2} y_{i}^{ 2} } } & {\sum\limits_{i = 1}^{m} {x_{i}^{ 2} z_{i}^{ 2} } } & {\sum\limits_{i = 1}^{m} {x_{i}^{ 2} y_{i} z_{i} } } & {\sum\limits_{i = 1}^{m} {x_{i}^{ 3} z_{i} } } & {\sum\limits_{i = 1}^{m} {x_{i}^{ 3} y_{i} } } & {\sum\limits_{i = 1}^{m} {x_{i}^{ 3} } } & {\sum\limits_{i = 1}^{m} {x_{i}^{ 2} y_{i} } } & {\sum\limits_{i = 1}^{m} {x_{i}^{ 2} z_{i} } } \\ {} & {\sum\limits_{i = 1}^{m} {y_{i}^{ 4} } } & {\sum\limits_{i = 1}^{m} {y_{i}^{ 2} z_{i}^{ 2} } } & {\sum\limits_{i = 1}^{m} {y_{i}^{ 3} z_{i} } } & {\sum\limits_{i = 1}^{m} {x_{i} y_{i}^{ 2} z_{i} } } & {\sum\limits_{i = 1}^{m} {x_{i} y_{\text{i}}^{ 3} } } & {\sum\limits_{i = 1}^{m} {x_{i} y_{i}^{ 2} } } & {\sum\limits_{i = 1}^{m} {y_{i}^{ 3} } } & {\sum\limits_{i = 1}^{m} {y_{i}^{ 2} z_{i} } } \\ {} & {} & {\sum\limits_{{{\text{i}} = 1}}^{m} {z_{\text{i}}^{ 4} } } & {\sum\limits_{i = 1}^{m} {y_{i} z_{i}^{ 3} } } & {\sum\limits_{i = 1}^{m} {x_{i} z_{i}^{ 3} } } & {\sum\limits_{i = 1}^{m} {x_{i} y_{i} z_{i}^{ 2} } } & {\sum\limits_{i = 1}^{m} {x_{i} z_{\text{i}}^{ 2} } } & {\sum\limits_{i = 1}^{m} {y_{i} z_{\text{i}}^{ 2} } } & {\sum\limits_{i = 1}^{m} {z_{\text{i}}^{ 3} } } \\ {} & {} & {} & {\sum\limits_{i = 1}^{m} {y_{i}^{ 2} z_{i}^{ 2} } } & {\sum\limits_{i = 1}^{m} {x_{i} y_{i} z_{\text{i}}^{ 2} } } & {\sum\limits_{i = 1}^{m} {x_{i} y_{i}^{ 2} z_{i} } } & {\sum\limits_{i = 1}^{m} {x_{i} y_{i} z_{i} } } & {\sum\limits_{i = 1}^{m} {y_{i}^{2} z_{i} } } & {\sum\limits_{i = 1}^{m} {y_{i} z_{\text{i}}^{ 2} } } \\ {} & {} & {} & {} & {\sum\limits_{i = 1}^{m} {x_{i}^{ 2} z_{i}^{ 2} } } & {\sum\limits_{i = 1}^{m} {x_{i}^{ 2} y_{i} z_{i} } } & {\sum\limits_{i = 1}^{m} {x_{i}^{ 2} z_{i} } } & {\sum\limits_{i = 1}^{m} {x_{i} y_{i} z_{i} } } & {\sum\limits_{i = 1}^{m} {x_{i} z_{\text{i}}^{ 2} } } \\ {} & {} & {} & {} & {} & {\sum\limits_{i = 1}^{m} {x_{i}^{ 2} y_{i}^{ 2} } } & {\sum\limits_{i = 1}^{m} {x_{i}^{ 2} y_{i} } } & {\sum\limits_{i = 1}^{m} {x_{i} y_{i}^{ 2} } } & {\sum\limits_{i = 1}^{m} {x_{i} y_{i} z_{i} } } \\ {} & {} & {} & {} & {} & {} & {\sum\limits_{i = 1}^{m} {x_{i}^{ 2} } } & {\sum\limits_{i = 1}^{m} {x_{i} y_{i} } } & {\sum\limits_{i = 1}^{m} {x_{i} z_{i} } } \\ {} & {} & {} & {} & {} & {} & {} & {\sum\limits_{i = 1}^{m} {y_{i}^{ 2} } } & {\sum\limits_{i = 1}^{m} {y_{i} z_{i} } } \\ {} & {} & {} & {} & {} & {} & {} & {} & {\sum\limits_{{{\text{i}} = 1}}^{m} {z_{i}^{ 2} } } \\ \end{array} } \right] \hfill \\ B = \left[ {\begin{array}{*{20}c} {\sum\limits_{i = 1}^{m} {x_{i}^{2} } } & {\sum\limits_{i = 1}^{m} {y_{i}^{2} } } & {\sum\limits_{i = 1}^{m} {z_{i}^{2} } } & {\sum\limits_{i = 1}^{m} {y_{i} z_{i} } } & {\sum\limits_{i = 1}^{m} {x_{i} z_{i} } } & {\sum\limits_{i = 1}^{m} {x_{i} y_{i} } } & {\sum\limits_{i = 1}^{m} {x_{i} } } & {\sum\limits_{i = 1}^{m} {y_{i} } } & {\sum\limits_{i = 1}^{m} {y_{i} } } \\ \end{array} } \right]^{\tau } \hfill \\ X = [a\;b\;c\;2f\;2g\;2h\;2p\;2q\;2r]^{\tau } \hfill \\ \end{gathered} $$
(14)
$$ \begin{gathered} \Updelta = \left[ {\begin{array}{*{20}c} a & h & g & p \\ h & b & f & q \\ g & f & c & r \\ p & q & r & l \\ \end{array} } \right] \quad D = \left[ {\begin{array}{*{20}c} a & h & g \\ h & b & f \\ g & f & c \\ \end{array} } \right] \hfill \\ I = a = b + c \qquad \qquad J = ab + bc + ca - f^{2} - g^{2} - h^{2} \hfill \\ \end{gathered} $$
(15)

Appendix 2

  • Fluid domain (See Fig. 9)

    Fig. 9
    figure 9

    Meshing statistic in fluid domain a quality, b aspect ratio, c skewness

  • Solid domain (See Fig. 10)

    Fig. 10
    figure 10

    Meshing statistic in solid domain a quality, b aspect ratio, c skewness

Appendix 3

See Tables 4, 5, 6.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kouhi, E., Morsi, Y.S. A parametric study on mathematical formulation and geometrical construction of a stentless aortic heart valve. J Artif Organs 16, 425–442 (2013). https://doi.org/10.1007/s10047-013-0719-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10047-013-0719-z

Keywords

Navigation