Skip to main content
Log in

Improving hydrogeological understanding through well-test interpretation by diagnostic plot and modelling: a case study in an alluvial aquifer in France

Amélioration de la compréhension hydrogéologique grâce à l’interprétation des essais de puits par diagnostic et modélisation: une étude de cas dans un aquifère alluvial en France

Mejora en el conocimiento hidrogeológico a través de la interpretación de ensayos de pozos mediante parcelas de diagnóstico y modelización: un estudio de caso en un acuífero aluvial en Francia

通过诊断图和模拟的试井解释提高水文地质的认识:以法国冲积含水层为例

Melhorando o conhecimento hidrogeológico por meio da interpretação de testes de poço por gráficos de diagnóstico e modelagem: um estudo de caso em um aquífero aluvial na França

  • Report
  • Published:
Hydrogeology Journal Aims and scope Submit manuscript

Abstract

The study of groundwater resources using pumping test data is usually carried out with the Theis solution, which enables the hydraulic parameters of porous aquifers such as the transmissivity and storage coefficient, to be estimated from the water-level drawdown. However, the data fitting can fail and provide only an indication that the pumped aquifer has a complex structure. Here, a diagnostic plot on log-derivative drawdown is used to identify flow regimes and thus aquifer heterogeneities, leading to plausible conceptual models. Nevertheless, the diagnostic plot is insufficient and must be accompanied by further modelling because of the nonuniqueness of the drawdown log-derivative signal. The proposed approach is applied to an alluvial plain in France, known to be complex because the deposition processes change over time, resulting in channel belts limited by low-permeability deposits in the floodplain or three-dimensional (3D) interconnected structures. Six analytical models were used to simulate drawdown and its derivatives during a three-day transient pumping test. The diagnostic performed on the pumping well showed that four conceptual models, with highly contrasted hydrodynamic behaviours, may correspond to the diagnostic. The joint use of pumping-well and observation-well data allowed the only appropriate model to be identified—a dual-permeability model characterizing a multilayer aquifer. The conceptual model matched the geological observations in boreholes and corroborates the fluvial sequence stratigraphy of the alluvial plain. The pumping test used here is a tool to explore the 3D architecture of the fluvial reservoir at the scale of the depositional sequence in the floodplain.

Résumé

L’étude des ressources en eau souterraine à partir de données d’essais de pompage est généralement réalisée avec la solution de Theis, qui permet d’estimer les paramètres hydrauliques des aquifères poreux, tels que la transmissivité et le coefficient d’emmagasinement, à partir du rabattement du niveau d’eau. Cependant, l’ajustement des données peut échouer et fournir seulement une indication relative à la complexité de la structure de l’aquifère sollicité par pompage. Ici, un tracé de diagnostic de la dérivé du rabattement selon une échelle logarithmique est utilisé pour identifier les régimes d’écoulement et donc les hétérogénéités de l’aquifère, conduisant à des modèles conceptuels plausibles. Néanmoins, le diagnostic de puits est insuffisant et doit être accompagné d’une modélisation plus poussée en raison de la non-unicité du signal de la dérivée du rabattement selon une échelle logarithmique. L’approche proposée est appliquée à une plaine alluviale en France, connue pour être complexe car les processus de dépôt ont évolué au cours du temps, donnant lieu à des zones de chenaux limitées par des dépôts peu perméables dans la plaine d’inondation ou à des structures tridimensionnelles (3D) interconnectées. Six modèles analytiques ont été utilisés pour simuler le rabattement et ses dérivés pendant un essai de pompage transitoire de trois jours. Le diagnostic réalisé sur le puits de pompage a montré que quatre modèles conceptuels, aux comportements hydrodynamiques très contrastés, peuvent correspondre au diagnostic. L’utilisation conjointe des données des puits de pompage et des puits d’observation a permis d’identifier le seul modèle approprié - un modèle à double perméabilité caractérisant un aquifère multicouche. Le modèle conceptuel correspond aux observations géologiques dans les forages et corrobore la stratigraphie séquentielle fluviale de la plaine alluviale. L’essai de pompage utilisé ici est un outil permettant d’explorer l’architecture 3D du réservoir fluvial à l’échelle de la séquence de dépôt dans la plaine d’inondation.

Resumen

El estudio de los recursos hídricos subterráneos a partir de los datos de los ensayos de bombeo suele realizarse con la solución de Theis, que permite estimar los parámetros hidráulicos de los acuíferos porosos, como la transmisividad y el coeficiente de almacenamiento, a partir del descenso del nivel del agua. Sin embargo, el ajuste de los datos puede no funcionar y proporcionar sólo una indicación de que el acuífero bombeado tiene una estructura compleja. En este caso, se utiliza un diagrama de diagnóstico de la depresión logarítmica derivada para identificar los regímenes de flujo y, por tanto, las heterogeneidades del acuífero, lo que conduce a modelos conceptuales plausibles. Sin embargo, el diagrama de diagnóstico es insuficiente y debe ir acompañado de una modelización adicional debido a la no unicidad de la señal log-derivada de la depresión. El enfoque propuesto se aplica a una llanura aluvial en Francia, conocida por su complejidad debido a que los procesos de deposición cambian con el tiempo, dando lugar a franjas de canales limitadas por depósitos de baja permeabilidad en la llanura de inundación o a estructuras tridimensionales (3D) interconectadas. Se utilizaron seis modelos analíticos para simular la depresión y sus derivados durante un ensayo de bombeo transitorio de tres días. El diagnóstico realizado en el pozo de bombeo mostró que pueden corresponder cuatro modelos conceptuales, con comportamientos hidrodinámicos muy contrastados. La utilización conjunta de los datos del pozo de bombeo y del pozo de observación permitió identificar el único modelo apropiado: un modelo de doble permeabilidad que caracteriza un acuífero multicapa. El modelo conceptual coincidió con las observaciones geológicas en pozos de sondeo y corrobora la estratigrafía de la secuencia fluvial de la llanura aluvial. El ensayo de bombeo utilizado aquí es una herramienta para explorar la arquitectura 3D del depósito fluvial a escala de la secuencia deposicional en la llanura aluvial.

摘要

利用抽水试验数据研究地下水资源通常采用 Theis 解, 它可以根据水位降深估算多孔介质含水层的水力参数, 如传导系数和蓄水系数。然而, 数据拟合可能会失败, 并且只能表明抽水含水层具有复杂的结构。在这里, 对数导数降深的诊断图用于识别流态, 从而识别含水层的异质性, 由此可形成合理的概念模型。然而, 由于降深对数导数信号的非唯一性, 仅用诊断图是不够的, 必须再建模分析。所提出的方法应用于法国众所周知复杂的冲积平原, 由于沉积过程随时间变化, 导致河岸带受到漫滩中低渗透性沉积物或三维 (3D) 互连结构的影响。在为期三天的非稳定抽水测试期间, 六个解析解模型用于模拟降深及其导数。抽水井上进行的诊断表明, 具有高度异质的水动力行为的四个概念模型可能与诊断相符。抽水井和观测井数据的联合使用可确定唯一合适的模型, 即表征多层含水层的双渗透模型。概念模型与钻孔中的地质观察相匹配, 并证实了冲积平原的河流相地层。此处使用的抽水试验是在漫滩沉积相尺度上探索冲积相储层 3D 结构的工具。

Resumo

O estudo dos recursos hídricos subterrâneos utilizando dados de teste de vazão é comumente resolvido por meio da equação de Theis, o que permite que os parâmetros hidráulicos dos aquíferos porosos, como a transmissividade e o coeficiente de armazenamento, possam ser estimados a partir do rebaixamento do nível d’água. Porém, o ajuste dos dados pode falhar, indicando apenas que o aquífero bombeado apresenta uma estrutura complexa. Aqui, um gráfico de diagnóstico da derivada logarítmica do rebaixamento é usado para identificar o regime de fluxo e, portanto, a heterogeneidade do aquífero, levando a modelos conceituais plausíveis. Ainda assim, o gráfico de diagnóstico é insuficiente e deve ser acompanhado de mais modelos, devido ao sinal não único da derivada logarítmica do rebaixamento. A abordagem proposta foi utilizada em uma planície aluvial na França, conhecida por ser complexa, pois os processos de deposição mudam com o tempo, o que resulta em um cinturão de canais limitados por depósitos de baixa permeabilidade na planície de inundação ou por estruturas tridimensionais (3D) interconectadas. Seis modelos analíticos foram utilizados para simular o rebaixamento, e suas funções derivadas, durante um teste de bombeamento transiente de 3 dias. O diagnóstico simulado para o poço de bombeamento mostrou que quatro modelos conceituais, cada um com comportamento hidrodinâmico contrastante, podem corresponder ao diagnóstico. A junção dos dados do poço de bombeamento e dos dados de poço de observação permitiu a identificação do único modelo apropriado – um modelo de permeabilidade dual caracterizando um aquífero multicamadas. O modelo conceitual coincide com as observações da geologia dos poços e corrobora com a sequência estratigráfica fluvial da planície aluvial. O teste de bombeamento utilizado é uma ferramenta para explorar a arquitetura 3D do reservatório fluvial na escala da sequência deposicional da planície de inundação.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  • Al-Bemani AS, Guo B, Ghalambor A (2003) The challenge of model identification in well test interpretation: a unique build up analysis case study. Pet Sci Technol 21:879–899. https://doi.org/10.1081/LFT-120017455

    Article  Google Scholar 

  • Arfib B, Charlier JB (2016) Insights into saline intrusion and freshwater resources in coastal karstic aquifers using a lumped rainfall-discharge-salinity model (the Port-Miou brackish spring, SE France). J Hydrol 540:148–161. https://doi.org/10.1016/j.jhydrol.2016.06.010

    Article  Google Scholar 

  • Barenblatt GI, Zheltov IP, Kochina IN (1960) Basic concepts in the theory of seepage of homogeneous liquids in fissured rocks [strata]. J Appl Math Mech 24:1286–1303. https://doi.org/10.1016/0021-8928(60)90107-6

    Article  Google Scholar 

  • Beauheim RL, Roberts RM, Avis JD (2004) Well testing in fractured media: flow dimensions and diagnostic plots. J Hydraul Res 42:69–76

    Article  Google Scholar 

  • Bestani L, Espurt N, Lamarche J, Bellier O, Hollender F (2016) Reconstruction of the Provence Chain evolution, southeastern France. Tectonics 35:1–20. https://doi.org/10.1002/2016TC004115

    Article  Google Scholar 

  • Blum M, Martin J, Milliken K, Garvin M (2013) Paleovalley systems: insights from Quaternary analogs and experiments. Earth Sci Rev 116:128–169. https://doi.org/10.1016/j.earscirev.2012.09.003

    Article  Google Scholar 

  • Borgomano JRF, Fournier F, Viseur S, Rijkels L (2008) Stratigraphic well correlations for 3-D static modeling of carbonate reservoirs. Am Assoc Pet Geol Bull 92:789–824. https://doi.org/10.1306/02210807078

    Article  Google Scholar 

  • Bourdet D (2002) Well test analysis: the use of advanced interpretation models. In: Handbook of petroleum exploration and production, Elsevier, Amsterdam

    Google Scholar 

  • Bourdet D, Whittle TM, Douglas AA, Pirard YM (1983) A new set of type curves simplifies well test analysis. World Oil 197, May 1983

  • Bourdet D, Ayoub JA, Pirard YM (1989) Use of pressure derivative in well-test interpretation. SPE Form Eval 4 (02):293–302

  • Bowling JC, Rodriguez AB, Harry DL, Zheng C (2005) Delineating alluvial aquifer heterogeneity using resistivity and GPR data. Groundwater 43:890–903. https://doi.org/10.1111/j.1745-6584.2005.00103.x

    Article  Google Scholar 

  • Caillol, Durozoy G, Gouvernet, Potie M (1968) Recherches d’eau dans la nappe alluviale de l’Huveaune en amont d’Aubagne [Water resources prospecting in the River Huveaune alluvial plain upstream Aubagne city]. 69 SGL 156 HYD, BRGM, Orléans, France

  • Cooper HH, Jacob CE (1946) A generalized graphical method for evaluating formation constants and summarizing well-field history. Eos Trans Am Geophysl Union 27:526–534. https://doi.org/10.1029/TR027i004p00526

    Article  Google Scholar 

  • Corbett PWM, Duarte GLB (2018) Understanding subsurface fluvial architecture from a combination of geological well test models and well test data. Geol Soc Spec Publ 488:237–257. https://doi.org/10.1144/SP488.7

    Article  Google Scholar 

  • Corbett PWM, Hamdi H, Gurav H (2012) Layered fluvial reservoirs with internal fluid cross flow: a well-connected family of well test pressure transient responses. Pet Geosci 18:219–229. https://doi.org/10.1144/1354-079311-008

    Article  Google Scholar 

  • de Marsily G, Delay F, Gonçalvès J, Renard P, Teles V, Violette S (2005) Dealing with spatial heterogeneity. Hydrogeol J 13:161–183. https://doi.org/10.1007/s10040-004-0432-3

    Article  Google Scholar 

  • Deruyck B, Ehlig-Economides C, Joseph J (1992) Well testing: testing design and analysis. Oilfield Rev 1:28–45

    Google Scholar 

  • Dewandel B, Aunay B, Maréchal JC, Roques C, Bour O, Mougin B, Aquilina L (2014) Analytical solutions for analysing pumping tests in a sub-vertical and anisotropic fault zone draining shallow aquifers. J Hydrol 509:115–131. https://doi.org/10.1016/j.jhydrol.2013.11.014

    Article  Google Scholar 

  • Dewandel B, Lanini S, Lachassagne P, Maréchal JC (2018) A generic analytical solution for modelling pumping tests in wells intersecting fractures. J Hydrol 559:89–99. https://doi.org/10.1016/j.jhydrol.2018.02.013

    Article  Google Scholar 

  • Durozoy G (1972) Plaine de Gémenos. Alimentation en eau potable Aubagne - Cassis [Gemenos plain. Drinking water resources supply for Aubagne and Cassis cities] BRGM/72-SGN-226-PRC, BRGM, Orléans, France

  • Ehlig-Economides CA, Schlumberger PH, Saga SV (1994) Guidelines simplify well test interpretation. Oil Gas J 92:29

  • Enemark T, Peeters LJM, Mallants D, Batelaan O (2019) Hydrogeological conceptual model building and testing: a review. J Hydrol 569:310–329. https://doi.org/10.1016/j.jhydrol.2018.12.007

    Article  Google Scholar 

  • Escobar FH, Navarrete JM, Losada HD (2004) Evaluation of pressure derivative algorithms for well-test analysis. In: Proc. of the SPE International Thermal Operations and Heavy Oil Symposium, pp 183–192. https://doi.org/10.2118/86936-ms

  • Ferroud A, Rafini S, Chesnaux R (2018) Using flow dimension sequences to interpret non-uniform aquifers with constant-rate pumping-tests: a review. J Hydrol X 2:100003. https://doi.org/10.1016/j.hydroa.2018.100003

    Article  Google Scholar 

  • Fischer P, Jardani A, Soueid Ahmed A, Abbas M, Wang X, Jourde H, Lecoq N (2017) Application of large-scale inversion algorithms to hydraulic tomography in an alluvial aquifer. Groundwater 55:208–218. https://doi.org/10.1111/GWAT.12457

    Article  Google Scholar 

  • Gandolfi J, Imbault M (2014) Diagnostic de l’état qualitatif de la nappe alluviale de l’Huveaune: masse d’eau souterraine codifiée FRDG369 dans la version V2 SDAGE 2016-2021 [Diagnostic of the qualitative state of the river Huveaune alluvial aquifer: groundwater body coded FRDG369 in version V2 SDAGE 2016-2021]. Final report, BRGM/RP-62300-FR, BRGM, Orléans, France

  • Giese M, Reimann T, Bailly-Comte V, Maréchal JC, Sauter M, Geyer T (2018) Turbulent and laminar flow in karst conduits under unsteady flow conditions: interpretation of pumping tests by discrete conduit-continuum modeling. Water Resour Res 54:1918–1933. https://doi.org/10.1002/2017WR020658

    Article  Google Scholar 

  • Gringarten AC, Ramey HJ (1974) Unsteady-state pressure distributions created by a well with a single infinite-conductivity vertical fracture. In: AIME 47th annual fall meeting, Society of Petroleum Engineering, Richardson, TX, pp 413–426

  • Hammond PA, Field MS (2014) A reinterpretation of historic aquifer tests of two hydraulically fractured wells by application of inverse analysis, derivative analysis, and diagnostic plots. J Water Resour Prot 6:481–506. https://doi.org/10.4236/jwarp.2014.65048

    Article  Google Scholar 

  • Hantush MS (1956) Analysis of data from pumping tests in leaky aquifers. Eos Trans Am Geophysl Union 37:702–714. https://doi.org/10.1029/TR037i006p00702

    Article  Google Scholar 

  • Horne RN (1990) Modern well test analysis: a computer aided approach. Petroway, Edmonton, AB

  • Hunt B, Scott D (2007) Flow to a well in a two-aquifer system. J Hydrol Eng 12:146–155. https://doi.org/10.1061/(ASCE)1084-0699(2007)12:2(146)

    Article  Google Scholar 

  • Illman WA (2014) Hydraulic tomography offers improved imaging of heterogeneity in fractured rocks. Groundwater 52:659–684. https://doi.org/10.1111/gwat.12119

    Article  Google Scholar 

  • Illman WA, Neuman SP (2000) Type-curve interpretation of multirate single-hole pneumatic injection tests in unsaturated fractured rock. Ground Water 38:899–911. https://doi.org/10.1111/J.1745-6584.2000.TB00690.X

    Article  Google Scholar 

  • Issautier B, Viseur S, Audigane P, le Nindre YM (2014) Impacts of fluvial reservoir heterogeneity on connectivity: implications in estimating geological storage capacity for CO2. Int J Greenhouse Gas Control 20:333–349. https://doi.org/10.1016/j.ijggc.2013.11.009

    Article  Google Scholar 

  • Jazayeri Noushabadi MR, Jourde H, Massonnat G (2011) Influence of the observation scale on permeability estimation at local and regional scales through well tests in a fractured and karstic aquifer (Lez aquifer, southern France). J Hydrol 403:321–336. https://doi.org/10.1016/j.jhydrol.2011.04.013

    Article  Google Scholar 

  • Kruseman G, Ridder NA (1991) Analysis and evaluation of pumping test data, 2nd edn. ILRI, Nairobi, Kenya, 377 pp

  • Lane HS, Lee JW, Watson AT (1991) Algorithm for determining smooth, continuous pressure derivatives from well-test data. SPE Form Eval 6:493–499. https://doi.org/10.2118/20112-PA

    Article  Google Scholar 

  • Larue DK, Friedmann F (2005) The controversy concerning stratigraphic architecture of channelized reservoirs and recovery by waterflooding. Pet Geosci 11:131–146. https://doi.org/10.1144/1354-079304-626

    Article  Google Scholar 

  • Laville P, Villeneuve M, Monteau R, Argyriadis I, Arlhac P, Blanc J-J, Dubar M, Floquet M, Fournier F, Hennuy J, Masse JP, Monteau R, Nury D, Philip J, Tassy A, Thinon I (2018) Carte géol. France (1/50 000), feuille Aubagne-Marseille, 3ème édition (1044) [Geol map. France (1: 50,000), Aubagne-Marseille sheet, 3rd edition (1044)]. BRGM, Orléans, France

  • Lods G, Roubinet D, Matter JM, Leprovost R, Gouze P (2020) Groundwater flow characterization of an ophiolitic hard-rock aquifer from cross-borehole multi-level hydraulic experiments. J Hydrol 589:125152. https://doi.org/10.1016/j.jhydrol.2020.125152

    Article  Google Scholar 

  • Maréchal JC, Dewandel B, Subrahmanyam K (2004) Use of hydraulic tests at different scales to characterize fracture network properties in the weathered-fractured layer of a hard rock aquifer. Water Resour Res 40. https://doi.org/10.1029/2004WR003137

  • Maréchal JC, Ladouche B, Dörfliger N, Lachassagne P (2008) Interpretation of pumping tests in a mixed flow karst system. Water Resour Res. https://doi.org/10.1029/2007WR006288

  • Maréchal J-C, Ladouche B, Dewandel B, Fleury P, Dörfliger N (2014) Diagnostic plots applied to well-tests in karst systems. H2Karst research in limestone hydrogeology. Environ Earth Sci. https://doi.org/10.1007/978-3-319-06139-9_9

  • Mariethoz G, Renard P, Straubhaar J (2010) The direct sampling method to perform multiple-point geostatistical simulations. Water Resour Res 46. https://doi.org/10.1029/2008WR007621

  • Massonnat GJ, Bandiziol D (1991) Interdependence between geology and well test interpretation. Proc. SPE Annual Technical Conference and Exhibition Omega, pp 813–822. https://doi.org/10.2523/22740-ms

  • Meier PM, Carrera J, Sánchez-Vila X (1998) An evaluation of Jacob’s method for the interpretation of pumping tests in heterogeneous formations. Water Resour Res 34:1011–1025. https://doi.org/10.1029/98WR00008

    Article  Google Scholar 

  • Melton FA (1936) An empirical classification of flood-plain streams. Am Geograph Soc 26:593–609

    Google Scholar 

  • Mijinyawa A, Gringarten AC (2008) Influence of geological features on well test behavior. 70th European Association of Geoscientists and Engineers Conference and Exhibition 2008: Leveraging Technology Incorporating SPE EUROPEC 2008 3:1434–1444. https://doi.org/10.2118/59398-ms

  • Moench AF (1984) Double-porosity models for a fissured groundwater reservoir. Water Resour Res 20:831–846

    Article  Google Scholar 

  • Nanson GC, Croke JC (1992) A genetic classification of of floodplains. Geomorphology 4:459–486. https://doi.org/10.2113/gsecongeo.3.7.611

    Article  Google Scholar 

  • Nassimi A, Mohammadi Z (2017) Analysis of flow dimension from a pumping test in a karst aquifer. Carbon Evapor 33:651–661. https://doi.org/10.1007/s13146-017-0383-0

    Article  Google Scholar 

  • Neuman SP (1972) Theory of flow in unconfined aquifers considering delayed response of the water table. Water Resour Res 8:1031–1045. https://doi.org/10.1029/WR008i004p01031

    Article  Google Scholar 

  • Neuman SP, Wierenga PJ (2003) A comprehensive strategy of Hydrogeologic modeling and uncertainty analysis for nuclear facilities and sites. US Nuclear Regulatory Commission Office of Nuclear Regulatory Research, Washington, DC, 311 pp

  • Oehlmann S, Geyer T, Licha T, Sauter M (2015) Reducing the ambiguity of karst aquifer models by pattern matching of flow and transport on catchment scale. Hydrol Earth Syst Sci 19:893–912. https://doi.org/10.5194/hess-19-893-2015

    Article  Google Scholar 

  • Renard P (2005) The future of hydraulic tests. Hydrogeol J 13:259–262. https://doi.org/10.1007/s10040-004-0406-5

    Article  Google Scholar 

  • Renard P, Glenz D, Mejias M (2009) Understanding diagnostic plots for well-test interpretation. Hydrogeol J 17:589–600. https://doi.org/10.1007/s10040-008-0392-0

    Article  Google Scholar 

  • Samani N, Pasandi M, Barry DA (2006) Characterizing a heterogeneous aquifer by derivative analysis of pumping and recovery test data. J Geol Soc Iran 1:29–41

  • Schlumberger (2002) Well test interpretation. Schlumberger report 122, Schlumberger, Houston, TX

  • Slatt RM (2013) Fluvial deposits and reservoirs. Develop Petrol Sci 61:283–369

  • Spitzberg S, Ufrecht W (2013) Hydraulische Charakterisierung eines urbanen Karstgrundwasserleiters mit Pumpversuchen [Hydraulic characterization of a karst aquifer in an urban environment focusing on pumping tests]. Grundwasser 19:5–16. https://doi.org/10.1007/s00767-013-0241-5

    Article  Google Scholar 

  • Tago J, Hernández-Espriú A (2018) A B-spline framework for smooth derivative computation in well test analysis using diagnostic plots. Groundwater 56:131–142. https://doi.org/10.1111/gwat.12579

    Article  Google Scholar 

  • Tamborski J, van Beek P, Conan P, Pujo-Pay M, Odobel C, Ghiglione JF, Seidel JL, Arfib B, Diego-Feliu M, Garcia-Orellana J, Szafran A, Souhaut M (2020) Submarine karstic springs as a source of nutrients and bioactive trace metals for the oligotrophic Northwest Mediterranean Sea. Sci Total Environ 732:1–14. https://doi.org/10.1016/j.scitotenv.2020.139106

    Article  Google Scholar 

  • Theis CV (1935) The relation between the lowering of the piezometric surface and the rate and duration of discharge of a well using groundwater storage. Trans Am Geophys Union 2:519–524

    Article  Google Scholar 

  • Villeneuve M, Blanc J-J, Collina-Girard J, Dubar M, Floquet M, Masse JP, Monteau R, Nury D, Philip J, Villeneuve M, Arfib B, Argyriadis I, Arlhac P, Arnal C, Caron J-P, Fournier F, Jouves J, Hennuy J, Laville P et al (2018) Mémoire explicatif. Carte géol. France (1/50 000), feuille Aubagne-Marseille, 3ème édition (1044) [Explanatory memory. Geol map. France (1: 50,000), Aubagne-Marseille sheet, 3rd edition (1044)]. BRGM, Orléans, France, 333 pp

  • Vogelgesang JA, Holt N, Schilling KE, Gannon M, Tassier-Surine S (2020) Using high-resolution electrical resistivity to estimate hydraulic conductivity and improve characterization of alluvial aquifers. J Hydrol 580:123992. https://doi.org/10.1016/j.jhydrol.2019.123992

    Article  Google Scholar 

  • Waters and Rivers Commission (2002) Recognising channel and floodplain forms. River Restoration report no. RR17, Waters and Rivers Commission, Gov Western Australia, Perth

  • Yeh TCJ, Mao D, Zha Y, Hsu KC, Lee CH, Wen JC, Lu W, Yang J (2014) Why hydraulic tomography works? Groundwater 52:168–172. https://doi.org/10.1111/gwat.12129

    Article  Google Scholar 

  • Zektser IS, Everett LG (2004) Groundwater resources of the world and their use. UNESCO, Paris

  • Zheng SY, Corbett PWM, Emery A (2003) Geological interpretation of well test analysis: a case study from a fluvial reservoir in the Gulf of Thailand. J Pet Geol 26:49–64. https://doi.org/10.1111/j.1747-5457.2003.tb00017.x

    Article  Google Scholar 

Download references

Acknowledgements

The authors would like to thank the Antea Group Aubagne, HydroAssistance and the SPL Eau des Collines for field collaboration and access to the data. We are very grateful to the reviewers (two anonymous and C. J. Neville) and the associate editor A. Hernández-Espriú for the valuable criticisms, which substantially improved the quality of the manuscript.

Funding

This report is part of the Karst-Huveaune project funded by Agence de l’Eau Rhône Méditerranée Corse, Région Sud-PACA, Conseil Départemental des Bouches-du-Rhône, Aix-Marseille Provence Métropole, BRGM (French Geological Survey), and Aix-Marseille University.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Thibaut Garin.

Ethics declarations

Conflict of interest

The authors declare no conflict of interest.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendix

Appendix

Table 1 List of symbols
Table 2 Table displaying the parameters calibrated for each analytical solution applied to pumping test data performed on pumping-well (PW) F2 and on the three observation wells (OWs) F1, Pz1 and Pz2

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Garin, T., Arfib, B., Ladouche, B. et al. Improving hydrogeological understanding through well-test interpretation by diagnostic plot and modelling: a case study in an alluvial aquifer in France. Hydrogeol J 30, 283–302 (2022). https://doi.org/10.1007/s10040-021-02426-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10040-021-02426-9

Keywords

Navigation