Skip to main content

Advertisement

Log in

Regional-scale airborne electromagnetic surveying of the Yucatan karst aquifer (Mexico): geological and hydrogeological interpretation

Levé électromagnétique aéroporté à échelle régionale de l’aquifère karstique du Yucatan (Mexique) : interprétation géologique et hydrogéologique

Relevamiento electromagnético aéreo a escala regional del acuífero kárstico de Yucatán (Méjico): interpretación geológica e hidrogeológica

墨西哥Yucatan岩溶含水层区域尺度的航空电磁测量:地质和水文地质解释

Levantamento aero-eletromagnético à escala regional do aquífero cársico de Iucatão (México): interpretação geológica e hidrogeológica

  • Report
  • Published:
Hydrogeology Journal Aims and scope Submit manuscript

Abstract

Geometry and connectivity of high-permeability zones determine groundwater flow in karst aquifers. Efficient management of karst aquifers requires regional mapping of preferential flow paths. Remote-sensing technology provides tools to efficiently map the subsurface at such scales. Multi-spectral remote sensing imagery, shuttle radar topography data and frequency-domain airborne electromagnetic (AEM) survey data were used to map karst-aquifer structure on the Yucatan Peninsula, Mexico. Anomalous AEM responses correlated with topographic features and anomalous spectral reflectance of the terrain. One known preferential flow path, the Holbox fracture zone, showed lower bulk electrical resistivity than its surroundings in the AEM surveys. Anomalous structures delineated inland were sealed above by a low-resistivity layer (resistivity: 1–5 Ωm, thickness: 5–6 m). This layer was interpreted as ejecta from the Chicxulub impact (Cretaceous/Paleogene boundary), based on similar resistivity signatures found in borehole logs. Due to limited sensitivity of the AEM survey, the subsurface configuration beneath the low-resistivity layer could not be unambiguously determined. AEM measurements combined with remote-sensing data analysis provide a potentially powerful multi-scale methodology for structural mapping in karst aquifers on the Yucatan Peninsula and beyond.

Résumé

La géométrie et la connexion des zones à perméabilité élevée déterminent l’écoulement de l’eau dans les aquifères karstiques. La gestion efficace de ces aquifères karstiques nécessite de cartographier à échelle régionale les chemins d’écoulement préférentiel. Les techniques de télédétection fournissent des outils pour cartographier efficacement la sub-surface à de telles échelles. Les images de télédétection multi-spectrale, les données topographiques fournies par le radar de la navette spatiale et les données de levé électromagnétique aéroporté (EMA) dans le domaine des fréquences ont été utilisées pour cartographier la structure de l’aquifère karstique de la Péninsule du Yucatan, Mexique. Les réponses anomales EMA sont corrélées avec les traits de la topographie et les anomalies de la réflectance spectrale du terrain. L’un des couloirs d’écoulement préférentiel connus, la zone de fracture de Holbox, a montré une résistivité électrique plus faible que les zones de levé EMA voisines. Les structures anomales délimitées à l’intérieur ont été recouvertes par une couche de faible résistivité (résistivité : 1–5 Ωm, épaisseur: 5–6 m). Cette couche a été interprétée comme représentant des matériaux éjectés de l’impact de Chicxulub (limite Crétacé/Paléogène) sur la base des signatures de résistivité similaires observées dans les logs de forage. En raison de la sensibilité limitée du levé EMA, la configuration de sub-surface sous la couche à faible résistivité n’a pas pu être déterminée avec certitude. Les mesures EMA combinées avec l’analyse des données de télédétection offrent une méthodologie multi-échelle potentiellement performante pour la cartographie structurale des aquifères karstiques de la Péninsule du Yucatan et au-delà.

Resumen

La geometría y la conectividad de zonas de alta permeabilidad determinan el flujo del agua subterránea en los acuíferos kársticos. Un manejo eficiente de los acuíferos kársticos requiere un mapeo regional de las trayectorias preferenciales de flujo. La tecnología de sensores remotos proporciona herramientas para mapear eficientemente el subsuelo en tales escalas. Se usaron imágenes multiespectrales de sensores remotos, los datos de topografía satelital y los datos de relevamiento electromagnéticos aéreos (AEM) en el dominio de la frecuencia para mapear la estructura del acuífero kárstico en la Península de Yucatán, Méjico. Las respuestas anómalas de AEM se correlacionan con aspectos topográficos y la reflectancia espectral anómala del terreno. Una trayectoria preferencial de flujo conocida, la zona de la fractura de Holbox, mostró una resistividad eléctrica menor que sus alrededores en los relevamientos AEM. Las estructuras anómalas delineadas tierra adentro fueron cerradas por encima por una capa de baja resistividad (resistividad: 1–5 Ωm, espesor: 5–6 m). Esta capa fue interpretada como la eyección del impacto Chicxulub (límite Cretácico – Paleógeno), basada en señales de resistividad similares encontradas en los registros de las perforaciones. Debido a la sensibilidad limitada del relevamiento AEM, la configuración del subsuelo debajo de la capa de baja resistividad no pudo ser determinada sin ambigüedad. Las medidas de AEM combinada con los análisis de datos de sensores remotos proporciona una herramienta multiescala potencialmente potente para el mapeo de la estructura en acuíferos kársticos de la Península de Yucatán y más allá.

摘要

高渗透区域的几何形状和连通性决定了岩溶含水层中地下水流的运动。为了有效管理岩溶含水层,需要对优先流动路径进行区域填图。遥感技术为在这种尺度上高效绘制地下水的流动路径提供了工具。多光谱遥感成像技术、航空雷达地形数据和频域航空电磁(AEM)测量数据被用来绘制墨西哥Yucatan半岛的岩溶含水层的结构。异常的AEM反应与地形特征和地形不规则的光谱反射有密切的联系。在AEM测量中,被人们所熟知的优先流动路径—Holbox裂隙区—显示出了比周围地区更低的体积电阻率。内陆的异常构造被一个低电阻率岩层(电阻率:1∼5Ωm,厚度:5∼6 m)所封闭。以在测井数据中发现的相似电阻率特征为基础,这个岩层被解译成来自于Chicxulub撞击的喷出物(白垩系/古近系的边界)。由于AEM测量敏感性的限制,位于低电阻率岩层之下的地层结构无法确定。与遥感数据分析结合的AEM测量方法提供了一个潜力巨大的多尺度方法,可以用来在Yucata半岛岩溶含水层进行构造填图或其它方面。

Resumo

A geometria e a conetividade de zonas altamente permeáveis determinam o escoamento da água subterrânea nos aquíferos cársicos. A gestão eficiente dos aquíferos cársicos requer o mapeamento regional dos percursos de escoamento preferencial. A essas escalas, as tecnologias de deteção remota fornecem ferramentas para mapear eficientemente a subsuperfície. Foram usadas imagens de deteção remota multi-espetrais, dados da topografia por radar da missão Space Shuttle e dados dos levantamentos aero-eletromagnéticos no domínio de frequência (AEM) para mapear a estrutura do aquífero cársico da Península de Iucatão, no México. As anomalias de AEM correlacionam-se com particularidades topográficas e com anomalias de refletância espetral do terreno. Um percurso de escoamento preferencial conhecido, a zona de fratura Holbox, manifestou no levantamento AEM uma resistividade elétrica geral menor que nas suas vizinhanças. Estruturas anómalas delineadas em terra estavam seladas superiormente por uma camada de baixa resistividade (resistividade: 1–5 Ωm, espessura: 5–6 m). Esta camada foi interpretada como sendo ejecta provenientes da estrutura de impacte Chicxulub (limite Cretácico/Paleogénico), com base em assinaturas de resistividade similares encontradas em diagrafias de sondagens. Devido a limitações de sensibilidade do levantamento AEM, não pode ser determinada sem ambiguidade a configuração da subsuperfície abaixo da camada de baixa resistividade. As medidas de AEM, combinadas com a análise dos dados de deteção remota, fornecem uma metodologia multi-escala potencialmente poderosa para o mapeamento estrutural em aquíferos cársicos da Península de Iucatão e zonas similares.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

References

  • Archie GE (1942) The electrical resistivity log as an aid in determining some reservoir characteristics. T Am Inst Mineral Metall Petrol Eng 146:54–62

    Google Scholar 

  • Atkinson TC (1977) Diffuse flow and conduit flow in limestone terrain in the Mendip Hills, Somerset (Great Britain). J Hydrol 35:93–110

    Article  Google Scholar 

  • Avdeev DB (2005) Three-dimensional electromagnetic modeling and inversion from theory to application. Surv Geophys 26:767–799

    Article  Google Scholar 

  • Bakalowicz M (2005) Karst groundwater: a challenge for new resources. Hydrogeol J 13:148–160. doi:10.1007/s10040-004-0402-9

    Article  Google Scholar 

  • Bauer-Gottwein P, Gondwe BRN, Charvet G, Marín LE, Rebolledo-Vieyra M, Merediz-Alonso G (2011) Review: The Yucatán Peninsula karst aquifer, Mexico. Hydrogeol J. doi:10.1007/s10040-010-0699-5

  • Beach T, Luzzadder-Beach S, Dunning N, Cook D (2008) Human and natural impacts on fluvial and karst depressions of the Maya Lowlands. Geomorphol 101:308–331. doi:10.1016/j.geomorph.2008.05.019

    Article  Google Scholar 

  • Beddows PA (2004) Groundwater hydrology of a coastal conduit carbonate aquifer: Caribbean coast of the Yucatan Peninsula, México. PhD Thesis, Univ of Bristol, UK

  • Beddows PA, Hendrickson MR (2008) When the survey is not enough: temperature, salinity, and dye tracing reveal flow paths. In: Elliot WR (ed) Proc. 2007 Natl Cave and Karst Manage Symp, St. Louis, MO, USA, pp 198–203

  • Benson RC, Yuhr L (1993) Spatial sampling considerations and their applications to characterizing fractured rock and karst systems. Environ Geol 22:296–307

    Article  Google Scholar 

  • Bosch F, Müller I (2005) Improved karst exploration by VLF-EM gradient surveys: comparison with other geophysical methods. Near Surf Geophys 3:299–310

    Google Scholar 

  • Cornaton F, Perrochet P (2002) Analytical 1D dual-porosity equivalent solutions to 3D discrete single-continuum models: application to karstic spring hydrgraph modelling. J Hydrol 262:165–176

    Article  Google Scholar 

  • Degirmenci M, Günay G (1992) Analysis of hydrologic relations between Egirdir-Beysehir-Sugla lakes system and adjacent basins by means of remote sensing techniques (southern Turkey). Environ Geol Water Sci 19(1):41–45

    Article  Google Scholar 

  • Dillon WP, Vedder JG (1973) Structure and development of the continental margin of British Honduras. Geol Soc Am Bull 84:2713–2732

    Article  Google Scholar 

  • Doll WE, Nyquist JE, Beard LP, Gamey TJ (2000) Airborne geophysical surveying for hazardous waste site characterization on the Oak Ridge Reservation, Tennessee. Geophysics 65(5):1372–1387

    Article  Google Scholar 

  • Doolittle J, Collins M (1998) A comparison of EM and GPR methods in areas of karst. Geoderma 85:83–102

    Article  Google Scholar 

  • Ford DC, Williams P (2007) Karst hydrogeology and geomorphology. Wiley, Chichester, UK, 576 pp

  • Fouke BW, Zerkle AL, Alvarez W, Pope KO, Ocampo AC, Wachtman RJ, Grajales Nishimura JM, Claeys P, Fischer AG (2002) Cathodoluminescence petrography and isotope geochemistry of KT impact ejecta deposited 360 km from the Chicxulub crater, at Albion Island, Belize. Sedimentology 49:117–138

    Article  Google Scholar 

  • Gamey TJ, Thompson M, Mandell W, Frano G (2001) Karst pathway delineation using combined spatial and geophysical analysis at Camp Crowder, Missouri. Geol Soc Am Abs 33(6):132.

    Google Scholar 

  • Gischler E, Gibson MA, Oschmann W (2008) Giant Holocene freshwater microbialites, Laguna Bacalar, Quintana Roo, Mexico. Sedimentology 55:1293–1309

    Article  Google Scholar 

  • Gondwe BRN, Lerer S, Stisen S, Marin L, Rebolledo-Vieyra M, Merediz-Alonso G, Bauer-Gottwein P (2010a) Hydrogeology of the south-eastern Yucatan Peninsula: new insights from water level measurements, geochemistry, geophysics and remote sensing. J Hydrol 389:1–17. doi:10.1016/j.jhydrol.2010.04.044

    Article  Google Scholar 

  • Gondwe BRN, Hong S-H, Wdowinski S, Bauer-Gottwein P (2010b) Hydrologic dynamics of the ground-water-dependent Sian Ka’an wetlands, Mexico, derived from InSAR and SAR data. Wetlands 30(1):1–13. doi:10.1007/s13157-009-0016-z

    Article  Google Scholar 

  • Gondwe BRN, Merediz-Alonso G, Bauer-Gottwein P (2011) The influence of conceptual model uncertainty on management decisions for a groundwater-dependent ecosystem in karst. J Hydrol. doi:10.1016/j.jhydrol.2011.01.023

  • Grajales-Nishimura JM, Cedillo-Pardo E, Rosales-Domínguez C, Morán-Zenteno DJ, Alvarez W, Claeys P, Ruíz-Morales J, García-Hernández J, Padilla-Avila P, Sánchez-Ríos A (2000) Chicxulub impact: the origin of reservoir and seal facies in the southeastern Mexico oil fields. Geol 28(4):307–310

    Article  Google Scholar 

  • Guérin R, Baltassat J-M, Boucher M, Chalikakis K, Galibert P-Y, Girard J-F, Plagnes V, Valois R (2009) Geophysical characterization of karstic networks: application to the Ouysse system (Poumeyssen, France). CR Geosci doi:10.1016/j.crte.2009.08.005

  • Gunn JD, Foss JE, Folan WJ, Carrasco MRD, Faust BB (2002) Bajo sediments and the hydraulic system of Calakmul, Campeche, Mexico. Anc Mesoam 13:297–315

    Article  Google Scholar 

  • Henson H, Sexton J, Henson M, Jones P (1997) Georadar investigation of karst in a limestone quarry near Anna. 67th Ann Int. Meet. SEG, Tulsa, OK, pp 763–767

  • Hildebrand AR, Penfield GT, Kring DA, Pilkington M, Camargo ZA, Jacobsen SB, Boynton WV (1991) Chicxulub crater: a possible Cretaceous/Tertiary boundary impact crater on the Yucatan Peninsula, Mexico. Geol 19:867–871

    Article  Google Scholar 

  • Huang H (2008) Airborne geophysical data leveling based on line-to-line correlations. Geophysics 73(3):F83–F89

    Article  Google Scholar 

  • Hung LQ, Batelaan O (2003) Environmental geological remote sensing and GIS analysis of tropical karst areas in Vietnam. Int Geosci and Remote Sens Symp 2003 (IGARSS ’03). Proc IEEE Int 4:2964–2966

    Google Scholar 

  • INEGI (1997) Carta edafológica [soil map]. Recursos electónicos. Escala 1:250,000. Shape file. Instituto Nacional de Estadística Geogrfía e Informática (INEGI), Aguascalientes, Mexico

  • ITC (2005) ILWIS 3.3 Academic. Software for remote sensing and GIS, International Institute for Geo-Information Science and Earth Observation (ITC), Enschede, The Netherlands

  • Kenkmann T, Schönian F (2006) Ries and Chicxulub: impact craters on Earth provide insights for Martian ejecta blankets. Meteorics Planet Sci 41(10):1587–1603

    Article  Google Scholar 

  • Kresic N (1995) Remote sensing of tectonic fabric controlling groundwater flow in Dinaric karst. Remote Sens Environ 53:85–90

    Article  Google Scholar 

  • Lara ME (1993) Divergent wrench faulting in the Belize southern lagoon: implications for Tertiary Caribbean plate movements and Quaternary reef distribution. Am Assoc Petrol Geol Bull 77:1041–1063

    Google Scholar 

  • Li G, Loper DE, Kung R (2008) Contaminant sequestration in karstic aquifers: experiments and quantification. Water Resour Res 44:W02429. doi:10.1029/2006WR005797

    Article  Google Scholar 

  • Lopez-Ramos E (1975) Geological summary of the Yucatan Peninsula, chap 7. In: Nairn AEM, Stehli FG (eds) The ocean basins and margins, vol 3: the Gulf of Mexico and the Caribbean. Plenum, New York

  • Maathuis BHP, Wang L (2006) Digital elevation model based hydro-processing. Geocarto Int 21(1):21–26

    Article  Google Scholar 

  • Mangin A (1974) Contribution à l’étude hydrodynamique des aquifers karstiques [Contribution to the study of hydrodynamics in karst aquifers]. Ann Spéléol 29 (3):283–332; 29 (4):495–601; 30 (1):21–124

    Google Scholar 

  • Marin LE, Perry EC, Essaid HI, Steinich B (2004) Hydrogeological investigations and numerical simulation of groundwater flow in the karstic aquifer of northwestern Yucatan, Mexico. In: Cheng A, H-D, Ouazar D (2004) Coastal aquifer management: monitoring, modeling and case studies. CRC, Boca Raton, FL, pp 257–278

  • Masoud A, Koike K (2006) Tectonic architecture through Landsat-7 ETM+/SRTM DEM-derived lineaments and relationship to the hydrogeologic setting in Siwa region, NW Egypt. J Afr Earth Sci 45:467–477

    Article  Google Scholar 

  • Miller TE (1996) Geologic and hydrologic controls on karst and cave development in Belize. J Cave Karst Stud 58(2):100–120

    Google Scholar 

  • Mochales T, Casas AM, Pueyo EL, Pueyo O, Román MT, Pocoví A, Soriano MA, Ansón D (2008) Detection of underground cavities by combining gravity, magnetic and ground penetrating radar surveys: a case study from the Zaragoza area, NE Spain. Environ Geol 53:1067–1077. doi:10.1007/s00254-007-0733-7

    Article  Google Scholar 

  • Moore YH, Stoessell RK, Easley DH (1992) Fresh-water/sea-water relationship within a ground-water flow system, northeastern coast of the Yucatan Peninsula. Ground Water 30(3):343–350

    Article  Google Scholar 

  • Motschka K (2001) Aerogeophysics in Austria. Bull Geol Surv Jpn 52(2–3):83–88

    Google Scholar 

  • NASA Landsat Program (1990) Tri-Decadal Landsat Orthorectified TM Mosaic of circa year 1990 (1985 to 1996) cloud-free images, N-16-15_loc. US Geological Survey, Sioux Falls, ID. Downloaded from http://glovis.usgs.gov/. Accessed 15 Jan 2010

  • NASA Landsat Program (2000) Landsat ETM + scenes p019r045_7x20000421, p019r046_7x20000421, p019r047_7x20000421, p020r045_7x20001106, p020r046_7x20001106, p020r047_7x20000327, p020r048_7x20000327. Orthorectified. US Geological Survey, Sioux Falls, ID, 14 Mar, 21 Apr, and 6 Nov 2000. Downloaded from http://glcf.umiacs.umd.edu/data/landsat/. Accessed 15 Jan 2010

  • NASA Landsat Program (2001) Landsat ETM + scene p020r046_7x20010314. Orthorectified. US Geological Survey, Sioux Falls, ID, 14 Mar 2001. Downloaded from http://glcf.umiacs.umd.edu/data/landsat/. Accessed 15 Jan 2010

  • NASA Landsat Program (2002) Landsat ETM + scene p019r048_7x20020918. Orthorectified. US Geological Survey, Sioux Falls, ID, 18 Sept 2002. Downloaded from http://glcf.umiacs.umd.edu/data/landsat/. Accessed 15 Jan 2010

  • Neuman BR, Rahbek ML (2007) Modeling the groundwater catchment of the Sian Ka’an Reserve, Quintana Roo. Assoc for Mex Cave Stud Bull 18AMCS, Austin, TX

  • Nyquist JE, Peake JS, Roth MJS (2007) Comparison of an optimized resistivity array with dipole-dipole soundings in karst terrain. Geophysics 72:F139

    Article  Google Scholar 

  • Ocampo AC, Pope KO, Fischer AG (1996) Ejecta blanket deposits of the Chicxulub crater from Albion Island, Belize. In: Ryder G, Fastovsky D, Gartner S (eds) The Creataceous-Tertiary event and other catastrophes in Earth history. Geol Soc Am Spec Pap 307:75–88

  • Ottowitz D (2009) 3-D Modellrechnung der Karststrukturen des Ox Bel Ha Höhlensystems zur Methodenevaluierung – Aeroelektromagnetic [3-D modeling of the airborne EM signal over the karstic caves of the Ox Bel Ha]. MSc Thesis, Univ. of Vienna, Austria

  • Paulsen DE, Lind IL (1997) Gammaspectral scanning of Creatceous/Tertiary boundary sections, Site 999 and Site 1001. Proc Ocean Drill Program Init Reps 165:7–13, 36, 186, 336

    Google Scholar 

  • Perry E, Velazquez-Oliman G, Marin L (2002) The hydrogeochemistry of the karst aquifer system of the northern Yucatan Peninsula, Mexico. Int Geol Rev 44:191–221

    Article  Google Scholar 

  • Perry E, Paytan A, Pedersen B, Velazquez-Oliman G (2009) Groundwater geochemistry of the Yucatan Peninsula, Mexico: constraints on stratigraphy and hydrogeology. J Hydrol 367(1–2):27–40. doi:10.1016/j.jhydrol.2008.12.026

    Article  Google Scholar 

  • Peterson EW, Wicks CM (2005) Fluid and solute transport from a conduit to the matrix in a carbonate aquifer system. Math Geol 37(8):851–867. doi:10.1007/s11004-005-9211-5

    Article  Google Scholar 

  • PetRos EiKon (2008) GeoTutor IV, Emigma Version 6.4. Geophysical Forward Modelling Software, Orangeville, ON

  • Pope KO, Dahlin BH (1989) Ancient Maya wetland agriculture: new insights from ecological and remote sensing research. J Field Archeol 16(1):87–106

    Article  Google Scholar 

  • Pope KO, Ocampo AC, Duller CE (1991) Mexican site for K/T impact crater? J Nature 351:105

    Article  Google Scholar 

  • Pope KO, Ocampo AC, Fischer AG, Vega FJ, Ames DE, King Jr. DT, Fouke BW, Wachtman RJ, Kletetschka G (2005) Chicxulub impact ejecta deposits in southern Quintana Roo, México, and central Belize. In: Kenkmann T, Hörz F, Deutsch A (eds) Large meteorite impacts III. Geol Soc Am Spec Pap 384:171–190

  • Quintana Roo Speleological Society (QRSS) (2010) Survey and cartography of the underwater caves of Quintana Roo Mexico. http://www.caves.org/project/qrss/. Accessed 15 Jan 2010

  • Rebolledo-Vieyra M, Urrutia-Fucugauchi J, Marín LE, Trejo-García A, Sharpton VL, Soler-Arechalde AM (2000) UNAM scientific shallow-drilling program of the Chicxulub impact crater. Int Geol Rev 42:928–940

    Article  Google Scholar 

  • Refsgaard JC, van der Sluijs JP, Brown J, van der Keur P (2006) A framework for dealing with uncertainty due to model structure error. Adv Water Resour 29:1586–1597

    Article  Google Scholar 

  • Rosencrantz E (1990) Structure and tectonics of the Yucatan Basin, Caribbean Sea, as determined from seismic reflection studies. Tectonics 9(5):1037–1059

    Article  Google Scholar 

  • Schönian F, Stöffler D, Kenkmann T, Wittmann A (2004) The fluidized Chicxulub ejecta blanket, Mexico: implications for Mars. Poster, 35th Annual Lunar and Planet Sci Conf, League City, TX, March 2004

  • Schönian F, Tagle R, Stöffler D, Kenkmann T (2005) Geology of southern Quintana Roo (Mexico) and the Chicxulub ejecta blanket. Abstract no. 2389. 36th Annual Lunar and Planet Sci Conf, League City, TX, March 2005

  • SGM (2007) Carta geológica de México (Geological map of Mexico). Escala 1:2,000,000. 6a edición. Servicio Geológico Mexicano (SGM), Pachuca, Mexico

  • Shah SD, Smith BD, Clark AK, Kress WH (2008) A multi-tool geophysical and hydrogeological investigation of a karst aquifer system, Cibolo Canyon Development Area, Bexar County, Texas. In: Kuniansky E (ed) US Geol Surv Karst Interest Group Proc, Bowling Green, KY, May 2008, pp 107–116

    Google Scholar 

  • Smart PL, Beddows PA, Coke J, Doerr S, Smith S, Whitaker FF (2006) Cave development on the Caribbean coast of the Yucatan Peninsula, Quintana Roo, Mexico. In: Harmon RS, Wicks C (eds) Perspectives on karst geomorphology, hydrology and geochemistry: a tribute volume to Derek C. Ford and William B. White. Geol Soc Am Spec Pap 404:105–128

    Google Scholar 

  • Smith BD, Cain MJ, Clark AK, Moore DW, Faith JR, Hill PL (2005) Helicopter electromagnetic and magnetic survey data and maps, northern Bexar County, Texas. US Geol Surv Open-File Rep 05-1158, pp 122

  • Southworth CS (1985) Applications of remote-sensing data, eastern Yucatan. In: Ward WC, Weidie AE, Back W (eds) Geology and hydrogeology of the Yucatan and Quaternary geology of northeastern Yucatan Peninsula. New Orleans Geol Soc Publ, New Orleans, LA, pp 12–19

    Google Scholar 

  • Steinich B, Marin LE (1996) Hydrogeological investigations in northwestern Yucatan, Mexico, using resistivity surveys. Ground Water 34(4):640–646

    Article  Google Scholar 

  • Steinich B, Marin LE (1997) Determination of flow characteristics in the aquifer of the Northwestern Peninsula of Yucatan, Mexico. J Hydrol 191:315–331

    Article  Google Scholar 

  • Supper R, Motschka K, Ahl A, Bauer-Gottwein P, Gondwe B, Merediz Alonso G, Römer A, Ottowitz D, Kinzelbach W (2009) Spatial mapping of submerged cave systems by means of airborne electromagnetics: an emerging technology to support protection of endangered karst aquifers. Near Surf Geophys 7(5):613–627. doi:10.3997/1873-0604.2009008

    Google Scholar 

  • Süzen ML, Toprak V (1998) Filtering of satellite images in geological lineament analyses: an application to a fault zone in central Turkey. Int J Remote Sens 19(6):1101–1114

    Article  Google Scholar 

  • Tam VT, De Smedt F, Batelaan O, Hung LQ, Dassargues A (2005) Study of cavernous underground conduits in Nam La (northwest Vietnam) by an integrative approach. Hydrogeol J 13:675–689. doi:10.1007/s10040-005-0452-7

    Article  Google Scholar 

  • Tulaczyk SM, Perry EC, Duller CE, Villasuso M (1993) Influence of the Holbox fracture zone on the karst geomorphology and hydrogeology of northern Quintana Roo, Yucatan Peninsula, Mexico. In: Beck BF (ed) Applied karst geology. Balkema, Rotterdam, The Netherlands, pp 181–189

    Google Scholar 

  • Tun-Dzul FJ, Vester H, García RD, Schmook B (2008) Estructura arbórea y variabilidad temporal del NDVI en los “bajos inundables” de la Península de Yucatan, México [Forest structure and temporal variability of NDVI in the ‘inundated lowlands’ of the Yucatan Peninsula, Mexico]. Polibotánica 25:69–90

    Google Scholar 

  • UBC-GIF (2000) A program library for forward modelling and inversion of frequency domain electromagnetic data over 1D structures, version 1.0. Developed by the UBC-Geophysical Inversion Facility, UBC, Vancouver, BC

  • Urrutia-Fucugauchi J, Marin L, Trejo-Garcia A (1996) UNAM Scientific drilling program of Chicxulub impact structure: evidence for a 300 kilometer crater diameter. Geophys Res Lett 23(13):1565–1568

    Article  Google Scholar 

  • Urrutia-Fucugauchi J, Morgan J, Stöffler D, Claeys P (2004) The Chicxulub Scientific Drilling Project (CSDP). Meteorics Planet Sci 39(5):787–790

    Article  Google Scholar 

  • Urrutia-Fucugauchi J, Chavez-Aguirre JM, Pérez-Cruz L, De la Rosa JL (2008) Impact ejecta and carbonate sequence in the eastern sector of the Chicxulub crater. C R Geosci 340:801–810

    Article  Google Scholar 

  • USGS (2006) Shuttle Radar Topography Mission, 3 Arc Second, Finished 2.0. US Geol Surv Glob Land Cover Facil, Univ of Maryland, College Park, MD

  • Vogelsang D (1987) Examples of electromagnetic prospecting for karst and fault systems. Geophys Prospect 35:604–617

    Article  Google Scholar 

  • Vouillamoz JM, Legchenko A, Albouy Y, Bakalowicz M, Baltassat JM, Al-Fares W (2003) Location of saturated karst aquifer with magnetic resonance sounding and resistivity imagery. Ground Water 41(5):578–586

    Article  Google Scholar 

  • Weidie AE (1985) Geology of Yucatan Platform. In: Ward WC, Weidie AE, Back W (eds) Geology and hydrogeology of the Yucatan and Quaternary geology of northeastern Yucatan Peninsula. New Orleans Geol Soc Publ, New Orleans, LA, pp 1–12

    Google Scholar 

  • West GF, Macnae JC (1991) Physics of the electromagnetic induction exploration method. pp 5–45 In: Nabighian MN (ed) Electromagnetic methods in applied geophysics, vol 2: applications, part A and part B. SEG, Tulsa, OK

  • Worthington SRH (2003) A comprehensive strategy for understanding flow in carbonate aquifer. Speleogen Evol Karst Aquifers 1(1):1–8

    Google Scholar 

  • Zhdanov MS (2002) Geophysical inverse theory and regularization problems. Elsevier, Amsterdam

Download references

Acknowledgements

Financial support from the Austrian Science Fund (project L524-N10 ‘XPLORE’), The Nature Conservancy, UNESCO, Geological Survey of Austria, the COWI Foundation, WWF Verdensnaturfonden/Aase & Ejnar Danielsens Fond 2006 and 2007, ETH Zürich, and Technical University of Denmark is gratefully acknowledged. We thank S. Bogaerts, K. Davidson, D. Jones, B. Phillips and R. Schmittner for permission to use the Sac Actun cave map. Andreas Ahl carried out the AEM data leveling and processing prior to the data analysis and inversion presented herein.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bibi R. N. Gondwe.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gondwe, B.R.N., Ottowitz, D., Supper, R. et al. Regional-scale airborne electromagnetic surveying of the Yucatan karst aquifer (Mexico): geological and hydrogeological interpretation. Hydrogeol J 20, 1407–1425 (2012). https://doi.org/10.1007/s10040-012-0877-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10040-012-0877-8

Keywords

Navigation