Skip to main content

Advertisement

Log in

Impact of climate change on groundwater recharge in a small catchment in the Black Forest, Germany

Impact du changement de climat sur la recharge en eau souterraine d’un petit bassin versant de la Forêt Noire, Allemagne

Einfluss des Klimawandels auf die Grundwasserneubildung in einem kleinen Einzugsgebiet im Schwarzwald, Deutschland

Impacto del cambio climático sobre la recarga del agua subterránea en una pequeña cuenca hidrográfica en la Selva Negra, Alemania

气候变化对德国黑森林区小流域地下水补给的影响

Impacte das alterações climáticas na recarga de água subterrânea numa pequena bacia da Floresta Negra, Alemanha

  • Report
  • Published:
Hydrogeology Journal Aims and scope Submit manuscript

Abstract

Temporal and spatial changes of the hydrological cycle are the consequences of climate variations. In addition to changes in surface runoff with possible floods and droughts, climate variations may affect groundwater through alteration of groundwater recharge with consequences for future water management. This study investigates the impact of climate change, according to the Special Report on Emission Scenarios (SRES) A1B, A2 and B1, on groundwater recharge in the catchment area of a fissured aquifer in the Black Forest, Germany, which has sparse groundwater data. The study uses a water-balance model considering a conceptual approach for groundwater-surface water exchange. River discharge data are used for model calibration and validation. The results show temporal and spatial changes in groundwater recharge. Groundwater recharge is progressively reduced for summer during the twenty-first century. The annual sum of groundwater recharge is affected negatively for scenarios A1B and A2. On average, groundwater recharge during the twenty-first century is reduced mainly for the lower parts of the valley and increased for the upper parts of the valley and the crests. The reduced storage of water as snow during winter due to projected higher air temperatures causes an important relative increase in rainfall and, therefore, higher groundwater recharge and river discharge.

Résumé

Les changements du cycle hydrologique dans le temps et l’espace sont la conséquence des variations du climat. En plus des changements dans l’écoulement de surface, avec de possibles inondations et sècheresses, les variations climatiques peuvent affecter les eaux souterraines, du fait de la modification de la recharge avec des conséquences pour la gestion future de l’eau. La présente étude examine, en référence au Rapport Spécial sur les Scénarios d’Emission (RSSE) A1B, A2, B1, l’impact du changementmclimatique sur la recharge des eaux souterraines dans le bassin d’alimentation d’un aquifère fissuré de la Forêt Noire, Allemagne, dont les données sur l’eau souterraine sont clairsemées. L’étude utilise un modèle de bilan hydrique prenant en compte une approche conceptuelle pour l’échange eau souterraine-eau de surface. Les données sur le débit de la rivière sont utilisées pour le calage et la validation du modèle. Les résultats montrent des changements de recharge de la nappe, dans le temps et l’espace. Celle-ci s’est progressivement réduite en été durant le 21ème siècle. Son total annuel est affecté négativement dans les scénarios A1B et A2. En moyenne, pendant le 21ème siècle, elle est réduite principalement dans les parties basses et augmentée dans les parties hautes de la vallée et sur les crêtes. La réduction du stockage d’eau sous forme de neige en hiver, imputable à des températures de l’air supérieures prévisibles cause une importante augmentation relative des pluies et, par suite, une recharge de nappe et un débit de rivière plus importants.

Zusammenfassung

Zeitliche und räumliche Änderungen des hydrologischen Kreislaufs resultieren aus der Variation des Klimas. Neben den Änderungen des Oberflächenabflusses mit möglichen Überschwemmungen und/oder Dürren, können sich Klimaänderungen auch auf das Grundwasser durch veränderte Grundwasserneubildungsraten auswirken, was Konsequenzen für das zukünftiges Wassermanagement haben kann. Diese Untersuchung befasst sich mit der Auswirkung der Klimaszenarien A1B A2 und B1 des Sonderberichts über Emissionsszenarien (SRES) auf die Grundwasserneubildung eines geklüfteten Grundwasserleiters im Schwarzwald (Deutschland), von dem nur begrenzt grundwasserbezogene Daten verfügbar sind. Es wird ein hydrologisches Wasserbilanzmodell mit einem konzeptuellen Ansatz für den Austausch zwischen Grund- und Oberflächenwasser gerechnet, das anhand von Abflussdaten kalibriert bzw. validiert wird. Die Ergebnisse zeigen, zeitliche und räumliche Änderungen der Grundwasserneubildung, die während des 21. Jahrhunderts in den Sommermonaten generell abnimmt. Im Mittel werden Abnahmen vor allem für die Talregionen des Untersuchungsgebiets prognostiziert, während in den höher gelegenen Regionen die Grundwasserneubildung eher zunimmt. Durch die ansteigenden Temperaturen wird während der Wintermonate weniger Wasser in Form von Schnee zwischengespeichert, so dass in diesem Zeitraum ein relativer Anstieg des Oberflächenabflusses und der Grundwasserneubildung prognostiziert wird.

Resumen

Los cambios temporales y espaciales del ciclo hidrológico son las consecuencias de las variaciones climáticas. Además de los cambios en el escurrimiento superficial con posibles inundaciones y sequías, las variaciones climáticas pueden afectar al agua subterránea a través de la alteración de la recarga del agua subterránea con consecuencias para el manejo futuro del agua. Este estudio investiga el impacto del cambio climático, de acuerdo con el informe especial sobre escenarios de emisiones (SRES) A1B, A2 and B1, sobre la recarga del agua subterránea en el área de una cuenca hidrográfica de un acuífero fisurado en la Selva Negra, Alemania, que tiene escasos datos de agua subterránea. El estudio usa un modelo de balance de agua considerando un enfoque conceptual para el intercambio agua subterránea–agua superficial. Los datos de la descarga del río son usados para la calibración y validación del modelo. Los resultados muestran cambios espaciales y temporales en la recarga del agua subterránea. La recarga del agua subterránea se reduce progresivamente para el verano durante el siglo 21. La suma anual de recarga de agua subterránea está afectada negativamente para los escenarios A1B y A2. En promedio, la recarga de agua subterránea durante el siglo 21 se reduce principalmente para las partes bajas del valle y se incrementa en las partes más altas de los valles y las crestas. La reducción en el almacenamiento de agua en forma de nieve durante el invierno debido a las mayores temperaturas del aire proyectadas provoca un importante aumento relativo de las precipitaciones y, por tanto, mayor recarga de aguas subterráneas y de mayor descarga de los ríos.

摘要

水循环的时间和空间变化是气候变化影响的结果。除了可能通过洪水或者干旱改变地表水流外,气候变化可通过改变地下水补给影响地下水及未来的水管理结果。德国山林区地下水数据稀少,根据排放情景(SRES)A1BA2B1的专题报道,本文调查了气候变化对该区裂隙含水层流域地下水补给的影响。本文使用考虑了地下水地表水相互作用概念化方法的水均衡模型。河水排泄数据用于模型识别验证。结果展示了地下水补给量的时空变化。21世纪地下水补给量在夏季逐渐减少。情景A1BA2下,地下水每年补给量的影响是负面的。21世纪地下水补给量均值在山谷下游减少,在山谷上游及山顶增加。由于升高的空气温度,冬季以雪形式贮存的水减少,导致降雨量的相对增加,进而引起地下水补给量及河水排泄量的增加。

Resumo

Mudanças temporais e espaciais do ciclo hidrológico são consequências das variações climáticas. Além de mudanças no escoamento superficial, com possíveis cheias e secas, as variações climáticas podem afetar as águas subterrâneas, através da alteração da recarga, com consequências para a gestão futura da água. Este estudo investiga o impacte da mudança do clima, de acordo com o Relatório Especial sobre Cenários de Emissões (SRES) A1B, A2 e B1, na recarga das águas subterrâneas na bacia hidrográfica de um aquífero fissurado na Floresta Negra, Alemanha, que apresenta uma escassez de dados sobre águas subterrâneas. O estudo utiliza um modelo de balanço hídrico, considerando uma abordagem concetual para as trocas água subterrânea-água superficial. São utilizados dados de descarga do rio para a calibração e validação do modelo. Os resultados mostram mudanças temporais e espaciais na recarga dos aquíferos. Durante o século XXI, a recarga das águas subterrâneas é progressivamente reduzida no verão. O montante anual da recarga subterrânea é afectado negativamente para os cenários A1B e A2. Em média, a recarga de água subterrânea durante o século XXI é reduzida, principalmente nas partes mais baixas do vale, e aumenta para a parte superior do vale e para as cristas. O reduzido armazenamento de água, sob a forma de neve, durante o inverno, devido às previstas temperaturas do ar mais elevadas, causa um importante aumento relativo da precipitação e, portanto, maior recarga de águas subterrâneas e maior caudal do rio.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  • Allen DM, Mackie DC, Wei M (2004) Groundwater and climate change: a sensitivity analysis for the Grand Forks aquifer, southern British Columbia, Canada. Hydrogeol J 12:270–290

    Article  Google Scholar 

  • Baumgartner A, Liebscher HJ, (1996) Allgemeine Hydrologie: quantitative Hydrologie [General hydrology: quantitative hydrology, 2nd edn.]. Bornträger, Berlin

  • Bates BC, Kundzewicz ZW, Wu S, Palutikof JP (eds) (2008) Climate change and water. IPCC technical paper, IPCC, Geneva, 210 pp

    Google Scholar 

  • Cohen D, Person M, Daannen R, Locke S, Dahlstrom D, Zabielski V, Winter TC, Rosenbery DO, Wright H, Ito E, Nieber JL, Gutowski JWJ (2006) Groundwater-supported evapotranspiration with glaciated watersheds under conditions of climate change. J Hydrol 320:484–500

    Article  Google Scholar 

  • Déqué M (2007) Frequency of precipitation and temperature extremes over France in an anthropogenic scenario: model results and statistical correction according to observed values. Glob Planet Chang 57:16–26

    Article  Google Scholar 

  • Demuth S (1993) Untersuchungen zum Niedrigwasser in West-Europa [Investigations to low flow conditions in west Europe]. Habilit. Freiburger Schriften zur Hydrologie 1, Institut für Hydrologie, Universität Freiburg, Freiburg, Germany

  • Eckhardt K, Ulbrich U (2003) Potential impacts of climate change on groundwater recharge and streamflow in a central European low mountain range. J Hydrol 284:244–252

    Article  Google Scholar 

  • Ferguson IM, Maxwell RM (2010) Role of groundwater in watershed response and land surface feedbacks under climate change. Water Resour Res 46, W00F02, doi:10.1029/2009WR008616

  • GLA (Geologisches Landesamt Baden-Württemberg) (1984) Geologische Karte von Baden-Württemberg 1:25.000, Blatt 7315 Bühlertal [Geological map of Baden-Württemberg, 1:25000, sheet 7315 Bühlertal]. Karte und Erläuterung; Freiburg i. Breisgau, Germany

  • GLA (Geologisches Landesamt Baden-Württemberg) (1994) Bodenkarte von Baden-Württemberg 1:200.000, Blatt CC7910 Freiburg [soil map of Baden-Württemberg1:200000, sheet CC7910, Freiburg]. Karte und tabellarische ErläuteWürttembergrung; Freiburg i. Breisgau, Germany

  • Goderniaux P, Brouyère S, Fowler HJ, Blenkinsop S, Therrin R, Orban P, Dassargues A (2009) Large scale surface-subsurface hydrological model to assess climate change impacts on groundwater reserves. J Hydrol 373:122–138

    Article  Google Scholar 

  • Green TR, Bates BC, Charles SP, Fleming PM (2007) Physically based simulation of potential effects of carbon dioxide-altered climates on groundwater recharge. Vadose Zone J 6(3):597–609

    Article  Google Scholar 

  • Hendricks Franssen HJ (2009) Impact of climate change on groundwater resources: the need for integrative approaches. Int J Clim Change Strat Manage 1(3):241–254

    Article  Google Scholar 

  • Herrera-Pantoja M, Hiscock KM (2008) The effect of climate change on potential groundwater recharge in Great Britain. Hydrol Proc 22:73–86

    Article  Google Scholar 

  • Hsu KC, Wang CH, Chen KC, Chen CT, Ma KW (2007) Climate-induced hydrological impacts on the groundwater system of the Pingtung Plain, Taiwan. Hydrogeol J 15(5):903–913

    Article  Google Scholar 

  • IPCC (2000) Emissions scenarios. IPCC special report, IPCC, Geneva. http://www.ipcc.ch/ipccreports/sres/emission/index.php?idp=0. Cited 5 April 2011

  • IPCC (2007) Climate Change 2007: synthesis report. IPCC, Geneva. http://www.ipcc.ch/pdf/assessment-report/ar4/syr/ar4_syr.pdf. Cited 5 April 2011

  • Irouschek T (1990) Hydrogeologie und Stoffumsatz im Buntsandstein des Nordschwarzwaldes [Hydrogeology and turnover of matter at the Buntsandstein of the northern Black Forest]. Tübinger Geowissenschaftliche Arbeiten, Reihe C, No. 4, Tübingen, Germany

  • Jacob D, Mahrenholz P (2006a) REMO A1B Scenario RUN, UBA Project, Datastream 3. World Data Center for Climate. CERA-DB REMO_UBA_A1B_D3. http://cera-www.dkrz.de/WDCC/ui/Compact.jsp?acronym=REMO_UBA_A1B_D3. Cited July 2010

  • Jacob D, Mahrenholz P (2006b) REMO A2 Scenario RUN, UBA Project, Datastream 3. World Data Center for Climate, Hamburg. CERA-DB REMO_UBA_A2_D3. http://cera-www.dkrz.de/WDCC/ui/Compact.jsp?acronym=REMO_UBA_A2_D3. Cited July 2010

  • Jacob D, Mahrenholz P (2006c) REMO B1 Scenario RUN, UBA Project, Datastream 3. World Data Center for Climate, Hamburg. CERA-DB REMO_UBA_B1_D3. http://cera-www.dkrz.de/WDCC/ui/Compact.jsp?acronym=REMO_UBA_B1_D3. Cited July 2010

  • Jacob D, Mahrenholz P (2006d) REMO climate OF THE 20th century RUN, UBA Project, Datastream 3. World Data Center for Climate, Hamburg. CERA-DB REMO_UBA_C20_D3. http://cera-www.dkrz.de/WDCC/ui/Compact.jsp?acronym=REMO_UBA_C20_D3. Cited July 2010

  • Jacob D, Göttel H, Kotlarski S, Lorenz P, Siek K (2008) Klimaauswirkungen und Anpassung in Deutschland: Phase 1 Erstellung regionaler Klimaszenarien für Deutschland [Climate impact and assimilation in Germany: phase 1 preparation of regional climate scenarios for Germany]. Abschlussbericht zum UFOPLAN-Vorhaben 20441138, Umweltbundesamt, Dessau-Roßlau, Germany

  • Jyrkama MI, Sykes JF (2007) The impact of climate change on spatially varying groundwater recharge in the Grand River Watershed (Ontario). J Hydrol 338(3–4):237–250

    Article  Google Scholar 

  • KLIWA (2007) Klimaveränderung und Konsequenzen für die Wasserwirtschaft [climate change and consequences for the water management]. KLIWA Bericht, Heft 10. 3. KLIWA-Symposium, 25–26 October, 2006, Stuttgart, Germany. Available from http://www.kliwa.de/index.php?pos=ergebnisse/hefte/. Cited 9 Aug 2011

  • KLIWA (2010) Klimaveränderung und Konsequenzen für die Wasserwirtschaft [climate change and consequences for the water management]. KLIWA Bericht, Heft 15. 4. KLIWA-Symposium, 3–4 December 2009, Mainz, Germany. Available from http://www.kliwa.de/index.php?pos=ergebnisse/hefte/. Cited 9 Aug 2011

  • LVA (Landesvermessungsamt Baden-Württemberg) (2007) Topographische Karte von Baden-Württemberg 1:25.000, Blatt 7315 Bühlertal, Stuttgart [Topographic map of Baden-Württemberg 1:25000, sheet 7315 Bühlertal]. LVA, Freiburg, Germany

  • Maillet E (1905) Mécanique et physique du globe: essais d’hydraulique souterraine et fluviale [Mechanics and physics of the globe: testing of underground water and rivers]. Libraire Scientifíque, Herman, Paris

  • Michelangeli PA, Vrac M, Loukos H (2009) Probabilistic downscaling approaches: application to wind cumulative distribution functions. Geophys Res Lett 36:L11708. doi:10.1029/2009GL038401

    Article  Google Scholar 

  • Monteith JL (1965) Evaporation and the environment. Symp Soc Expl Biol 19:205–234

    Google Scholar 

  • Moustadraf J, Razack SM (2008) Evaluation of the impacts of climate changes on the coastal Chaouia aquifer, Morocco, using numerical modelling. Hydrogeol J 16(7):1411–1426

    Article  Google Scholar 

  • Moriasi DN, Arnold JG, Van Liew MW, Bingner RL, Harmel RD, Veith TL (2007) Model evaluation guidelines for systematic quantification of accuracy in watershed simulations. Trans ASABE 50(3):885–900

    Google Scholar 

  • Penman HL (1948) Natural evaporation from open water, bare soil and grass. Proc R Soc Lond A 193:120–146

    Google Scholar 

  • Roeckner E, Bäuml G, Bonaventura L, Brokopf R, Esch M, Giorgetta M, Hagemann S, Kirchner I, Kornblueh L, Manzini E, Rhodin A, Schlese U, Schulzweida U, Tompkins A (2003) The atmospheric general circulation model ECHAM5: part I, model description. Report no. 349, Max Planck Institut für Meteorology, Hamburg, Germany. 127 pp

  • Schulla J, Jasper K (2007) Model description WaSIM-ETH. ETH Zürich, Zürich

    Google Scholar 

  • Seeger T (1990). Abfluss- und Stofffrachtseparation im Buntsandstein des Nordschwarzwaldes [Runoff and matter separation in the Buntsandstein of the northern Black Forest]. Tübinger Geowissenschaftliche Arbeiten, Reihe C, no. 6, Tübingen, Germnay

  • Stoll S, Hendricks Franssen HJ, Butts M, Kinzelbach W (2011) Analysis of the impact of climate change on groundwater related hydrological fluxes: a multi-model approach including different downscaling methods. Hydrol Earth Syst Sci 15:21–38

    Article  Google Scholar 

  • Sulis M, Paniconi C, Rivard C, Harvey R, Chaumont D (2011) Assessment of climate change impacts at the catchment scale with a detailed hydrological model of surface-subsurface interactions and comparison with a land surface model. Water Resour Res 47:W01513. doi:10.1029/2010WR009167

    Article  Google Scholar 

  • Van Genuchten MTh (1980) A closed-form equation for predicting the hydraulic conductivity of unsaturated soils. Soil Science Soc Am J 44:892–898

    Article  Google Scholar 

  • Van Roosmalen L, Christensen BSB, Sonnenborg TO (2007) Regional differences in climate change impacts on groundwater and stream discharge in Denmark. Vadose Zone J 6(3):554–571

    Article  Google Scholar 

  • Wegehenkel M, Kersebaum KC (2009) An assessment of the impact of climate change on evapotranspiration, groundwater recharge, and low-flow conditions in a mesoscale catchment in northeast Germany. J Plant Nutr Soil Sci 172:737–744

    Article  Google Scholar 

  • Wendling U (1975) Zur Messung und Schätzung der potentiellen Verdunstung [Measurement and estimation of potential evapotranspiration]. Zeitschr Meteorol 25(2):103–111

    Google Scholar 

Download references

Acknowledgements

The authors would like to thank ENBW AG for discharge data allocation and Karsten Jasper for his support with WaSim ETH in runoff modelling. Many thanks to Sirit Coeppicus for language corrections. The comments of two anonymous reviewers greatly improved this paper.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Christoph Neukum.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Neukum, C., Azzam, R. Impact of climate change on groundwater recharge in a small catchment in the Black Forest, Germany. Hydrogeol J 20, 547–560 (2012). https://doi.org/10.1007/s10040-011-0827-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10040-011-0827-x

Keywords

Navigation