Skip to main content
Log in

Non-Darcian flow to a well in a leaky aquifer using the Forchheimer equation

Ecoulement non-Darcien vers un puits dans un aquifère semi-perméable utilisant l’équation de Forchheimer

Flujo no Darciano hacia un pozo en un acuífero semiconfinado usando la ecuación de Forchheimer

基于Forchheimer定律的越流含水层中抽水井附近非达西流

Fluxo não darciano para um furo num aquífero semiconfinado utilizando a equação de Forchheimer

  • Paper
  • Published:
Hydrogeology Journal Aims and scope Submit manuscript

Abstract

Non-Darcian flow to a well in a leaky aquifer was investigated using a finite difference method. Flow in the leaky aquifer is assumed to be non-Darcian and horizontal, while flow in the aquitard is assumed to be Darcian and vertical. The Forchheimer equation was employed to describe the non-Darcian flow in the aquifer. The finite difference solution was compared with the solution of Birpinar and Sen (2004). The latter overestimates the drawdown at early times and underestimates the drawdown at late times; also, the impact of β D on the drawdown depends on the value of B D, where β D is a dimensionless turbulent factor in the Forchheimer equation and B D is the dimensionless leakage parameter. The impact of leakage on drawdown is similar to that of Darcian flow. A sensitivity analysis indicated that the drawdown is very sensitive to the change in the dimensionless well radius r cD when B D is relatively large, while it is sensitive to the change in B D when B D is relatively small. The numerical solution has been applied to analyze the pumping test data in Chaj-Doab area of Pakistan. Birpinar ME, Sen Z (2004) Forchheimer groundwater flow law type curves for leaky aquifers. J Hydrol Eng 9(1):51–59

Résumé

Un écoulement non Darcien vers un puits dans un aquifère semi-perméable a été étudié en utilisant la méthode des éléments finis. Un écoulement dans un aquifère semi-captif est considéré comme non Darcien et horizontal, tandis que l’écoulement dans un aquitard est supposé être darcien et vertical. L’équation de Forchheimer a été employée pour décrire l’écoulement non Darcien dans l’aquifère. La solution avec éléments finis a été comparée avec la solution de Birpinar et Sen (2004). Cette dernière surestime le rabattement au début de pompage et sous estime celui-ci en fin de pompage; par suite, l’impact de β D sur le rabattement dépend de la valeur de B Dβ D est un facteur de turbulence sans dimension dans l’équation de Forchheimer et B D est le paramètre de drainance sans dimension. L’incidence de la drainance sur le rabattement est similaire à celle d’un écoulement Darcien. Une analyse de sensibilité montre que le rabattement est très sensible à la variation de rayon r cD du puits quand B D est grand, alors qu’il est sensible à la variation de B D quand B D est relativement petit. La solution numérique a été appliquée pour analyser le test de pompage, secteur de Chaj-Doab, Pakistan. Birpinar ME, Sen Z (2004) Forchheimer groundwater flow law type curves for leaky aquifers [Courbes de Forchheimer type écoulement de nappe en aquifères semi-perméables]. J Hydrol Eng 9(1):51–59

Resumen

Se investigó el flujo no Darciano hacia un pozo en acuífero semiconfinado usando un método de diferencias finitas. El flujo en el acuífero semiconfinado se supone Darciano y horizontal, mientras que el flujo en el acuitardo se supone Darciano y vertical. Se empleó la ecuación de Forchheimer para describir el flujo no Darciano en el acuífero. La solución a diferencias finitas fue comparada con la solución de Birpinar y Sen (2004). Esta última sobreestima la depresión en los primeros tiempos y subestima la depresión en los tiempos posteriores, además, el impacto de β D en la depresión depende del valor de B D, donde β D es un factor adimensional de turbulencia en la ecuación de Forchheimer y B D es el parámetro adimensional de filtración. El impacto de la filtración en la depresión es similar al del flujo Darciano. Un análisis de sensibilidad indicó que la depresión es muy sensible al cambio en el radio adimensional r cD cuando B D es grande, mientras que es sensible al cambio en B D cuando B D es relativamente pequeño. La solución numérica se aplicó para analizar los datos de ensayos de bombeo en el área Chaj-Doab de Pakistan. Birpinar ME, Sen Z (2004) Forchheimer groundwater flow law type curves for leaky aquifers [Curvas tipo de la ley de flujo de aguas subterráneas de Forchheimer para acuíferos semiconfinados]. J Hydrol Eng 9(1):51–59

摘要

本文采用有限差分方法研究了越流含水层中抽水井附近的非达西流问题。越流含水层中的水流假定为非达西流, 且方向为水平方向; 弱透水层中的水流假定为达西流, 且方向为竖直方向。本文所获得的有限差分解与Birpinar和Sen (2004)所得到的解进行了比较, 结果表明后者在抽水初期会高估水位降深而在抽水后期会低估水位降深。此外还发现β D对水位降深的影响取决于B D的大小, 其中β D为Forchheimer定律中无量纲紊动因子, B D为无量纲越流因子。越流对水位降深的影响与达西流情况下的结果一致。对各个参数进行敏感性分析发现当B D取值较大时, 水位降深对无量纲井径r cD比较敏感, 当B D取值较小时, 水位降深对B D比较敏感。最后本文还利用所得到的数值解对巴基斯坦Chaj-Doab地区的某一抽水试验数据进行了分析。Birpinar ME, Sen Z (2004) Forchheimer groundwater flow law type curves for leaky aquifers [基于Forchheimer定律的越流含水层中地下水流动井函数标准曲线]. J Hydrol Eng 9(1):51–59

Resumo

Investigou-se o fluxo não darciano para um furo num aquífero semiconfinado utilizando um método de diferenças finitas. Assume-se que o fluxo no aquífero semiconfinado é não darciano e horizontal enquanto no aquitardo é darciano e vertical. Aplicou-se a equação de Forchheimer para descrever o fluxo não darciano no aquífero. Comparou-se a solução de diferenças finitas com a solução de Birpinar e Sen (2004). Esta solução sobrestima o rebaixamento para tempos curtos de ensaio e subestima o rebaixamento para tempos longos; também, o impacte de β D no rebaixamento depende do valor de B D, onde β D é um factor de turbulência adimensional na equação de Forchheimer e B D é o parâmetro de drenância adimensional. O impacte da drenância no rebaixamento é semelhante àquele do fluxo de Darcy. Uma análise de sensibilidade indicou que o rebaixamento é muito sensível à mudança do raio adimensional do poço r cD quando B D é grande, enquanto é sensível à mudança de B D quando B D é relativamente pequeno. A solução numérica foi aplicada para analisar os dados do ensaio de bombagem na área de Chaj-Doab, no Paquistão. Birpinar ME, Sen Z (2004) Forchheimer groundwater flow law type curves for leaky aquifers [Curvas-tipo da lei Forchheimer de escoamento de água subterrânea para aquíferos semiconfinados]. J Hydrol Eng 9(1):51–59

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  • Ahmad N (1998) Evaluation of groundwater resources in the upper middle part of Chaj-Doak area, Pakistan. PhD Thesis, Istanbul Technical Univ., Turkey

  • Basak P (1977) Non-penetrating well in a semi-infinite medium with non-linear flow. J Hydrol 33:375–382

    Article  Google Scholar 

  • Basak P (1978) Analytical solutions for two-regime well flow problems. J Hydrol 38:147–159

    Article  Google Scholar 

  • Birpinar ME, Sen Z (2004) Forchheimer groundwater flow law type curves for leaky aquifers. J Hydrol Eng 9(1):51–59

    Article  Google Scholar 

  • Bordier C, Zimmer D (2000) Drainage equations and non-Darcian modeling in coarse porous media or geosynthetic materials. J Hydrol 228:174–187

    Article  Google Scholar 

  • Camacho-V RG, Vasquez-C M (1992) Comment on “Analytical solution incorporating nonlinear radial flow in confined aquifers” by Zekai Sen. Water Resour Res 28(12):3337–3338

    Article  Google Scholar 

  • Choi ES, Cheema T, Islam MR (1997) A new dual-porosity/dual permeability model with non-Darcian flow through fractures. J Petrol Sci Eng 17(3–4):331–344

    Article  Google Scholar 

  • Darcy H (1856) Les Fountaines publiques de la wille de Dijon [The public fountains of the city of Dijon]. Dalmond, Paris

    Google Scholar 

  • Dudgeon CR (1966) An experimental study of the flow of water through coarse granular media. Houille Blanche 7:785–801

    Article  Google Scholar 

  • Escande L (1953) Experiments concerning the filtration of water through rock mass. Proceedings of Minnesota International Hydraulics Convention, September 1953, New York

  • Ewing RE, Lazarov RD, Lyons SL, Papavassiliou DV, Pasciak J, Qin G (1999) Numerical well model for non-Darcy flow through isotropic porous media. Comp Geosci 3:185–204

    Article  Google Scholar 

  • Ewing RE, Lin Y (2001) A mathematical analysis for numerical well models for non-Darcy flows. App Num Math 39(1):17–30

    Article  Google Scholar 

  • Forchheimer PH (1901) Wasserbewegung durch Boden [Movement of water through soil]. Zeitschr Ver deutsch Ing 49:1736–1749 and 50:1781–1788

  • Giorgi T (1997) Derivation of the Forchheimer law via matched asymptotic expansions. Transp Porous Med 29(2):191–206

    Article  Google Scholar 

  • Harr ME (1962) Ground water and seepage. McGraw-Hill, New York, 410 pp

    Google Scholar 

  • Hantush MS, Jacob CE (1955) Non-steady radial flow in an infinite leaky aquifer. Trans Am Geophy Union 36(1):95–100

    Google Scholar 

  • Huang YC, Yeh HD (2007) The use of sensitivity analysis in on-line aquifer parameter estimation. J Hydrol 335(3–4):406–418

    Article  Google Scholar 

  • Irmay S (1958) On the theoretical derivation of Darcy and Forchheimer formulas. Trans Am Soc Geophys Union 39:702–707

    Google Scholar 

  • Izbash SV (1931) O filtracii v kropnozernstom materiale [Groundwater flow in the material kropnozernstom?]. Izv. Nauchnoissled, Inst. Gidrotechniki (NIIG), Leningrad, USSR

  • Li J, Huang G, Wen Z, Zhan H (2008) Experimental study on non-Darcian flow in two kinds of media with different diameters (in Chinese with English abstract). J Hydraul Eng 39(6):726–732

    Google Scholar 

  • Liou TS, Yeh HD (1997) Conditional expectation for evaluation of risk groundwater flow and transport: one-dimensional analysis. J Hydrol 199:378–402

    Article  Google Scholar 

  • Mathias S, Butler A, Zhan H (2008) Approximate solutions for Forchheimer flow to a well. J Hydraul Eng 134(9):1318–1325

    Article  Google Scholar 

  • Muskat M (1937) The flow of homogeneous fluids through porous media, 2nd edn. McGraw-Hill, New York, Edwards, Ann Arbor, MI

    Google Scholar 

  • Polubarinova-Kochina P (1962) Theory of ground water movement. Translated by J.M. De Wiest. Princeton University Press, Princeton, NJ

    Google Scholar 

  • Rose HE (1951) Fluid flow through beds of granular material: some aspects of fluid flow. Arnold, London, pp 136–162

    Google Scholar 

  • Sen Z (1985) Volumetric approach to type curves in leaky aquifers. J Hydraul Eng 111(3):467–484

    Article  Google Scholar 

  • Sen Z (1987) Non-Darcian flow in fractured rocks with a linear flow pattern. J Hydrol 92:43–57

    Article  Google Scholar 

  • Sen Z (1988) Type curves for two-region well flow. J Hydraul Eng 114(12):1461–1484

    Article  Google Scholar 

  • Sen Z (1989) Nonlinear flow toward wells. J Hydraul Eng 115(2):193–209

    Article  Google Scholar 

  • Sen Z (1990) Nonlinear radial flow in confined aquifers toward large-diameter wells. Water Resour Res 26(5):1103–1109

    Google Scholar 

  • Sen Z (2000) Non-Darcian groundwater flow in leaky aquifers. Hydrolog Sci J 45(4):595–606

    Article  Google Scholar 

  • Slepicka F (1961) Hydraulic function of cylindrical well in an artesian aquifer with regard to new research on flow through porous media. Proceedings of the 9th World Congress of the International Association of Hydraulic Research, vol 1, Dubrovnik, Czechoslovakia, 395 pp

  • Sorek S, Levi-Hevroni D, Levy A, Ben-Dor G (2005) Extensions to the macroscopic Navier–Stokes equation. Trans Porous Med 61:215–233

    Article  Google Scholar 

  • Whitaker S (1996) The Forchheimer equation: a theoretical development. Transp Porous Med 49(2):1573–1634

    Google Scholar 

  • Wilkinson JK (1956) The flow of water through rockfill and application to the design of dams. Proceedings of the 2nd Australian-New Zealand Conference on Soil Mechanics and Foundation Engineering, Christchurch, New Zealand, 1956, 141 pp

  • Wen Z, Huang G, Zhan H (2006) Non-Darcian flow in a single confined vertical fracture toward a well. J Hydrol 330:698–708

    Article  Google Scholar 

  • Wen Z, Huang G, Zhan H (2008a) An analytical solution for non-Darcian flow in a confined aquifer using the power law function. Adv Water Resour 31:44–55

    Article  Google Scholar 

  • Wen Z, Huang G, Zhan H (2008b) Non-Darcian flow to a well in an aquifer–aquitard system. Adv Water Resour 31:1754–1763

    Article  Google Scholar 

  • Wen Z, Huang G, Zhan H, Li J (2008c) Two-region non-Darcian flow toward a well in a confined aquifer. Adv Water Resour 31:818–827

    Article  Google Scholar 

  • Wen Z, Huang G, Zhan H (2009) A numerical solution for non-Darcian flow to a well in a confined aquifer using the power law function. J Hydrol 364:99–106

    Article  Google Scholar 

  • Wu YS (2002a) Numerical simulation of single-phase and multiphase non-Darcian flow in porous and fractured reservoirs. Transp Porous Med 49:209–240

    Article  Google Scholar 

  • Wu YS (2002b) An approximate analytical solution for non-Darcy flow toward a well in fractured media. Water Resour Res 38(3), 1023. doi:10.1029/2001WR000713

  • Yang SY, Yeh HD (2009) Radial groundwater flow to a finite diameter well in a leaky confined aquifer with a finite-thickness skin. Hydrol Process 23:3382–3390

    Article  Google Scholar 

  • Yeh HD (1987) Theis’ solution by nonlinear least-squares and finite-difference Newton’s method. Ground Water 25:710–715

    Article  Google Scholar 

Download references

Acknowledgements

This research was partially supported by the National Natural Science Foundation of China (Grant Nos. 41002082, 50779067), the National Basic Research Program of China (Grant No. 2010CB428802), and the Special Fund for Basic Scientific Research of Central Colleges, China University of Geosciences (Wuhan; Grant No. CUGL090301). The constructive comments of two anonymous reviewers and the Editor are also gratefully acknowledged. The authors also sincerely thank the Technical Editorial Advisor, Sue Duncan, for carefully checking the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhang Wen.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wen, Z., Huang, G. & Zhan, H. Non-Darcian flow to a well in a leaky aquifer using the Forchheimer equation. Hydrogeol J 19, 563–572 (2011). https://doi.org/10.1007/s10040-011-0709-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10040-011-0709-2

Keywords

Navigation