Skip to main content

Advertisement

Log in

Estimation of regional evapotranspiration in the extended Salado Basin (Argentina) from satellite gravity measurements

Estimation de l’évapotranspiration régionale sur le bassin du Salado (Argentine) à partir de mesures satellites de gravité

Estimación de la evapotranspiración regional en la extensa cuenca del Salado (Argentina) a partir de mediciones de gravedad satelital

利用卫星重力资料估计阿根廷萨拉多盆地及周边区域蒸散发量

Estimação da evapotranspiração regional na Bacia estendida de Salado (Argentina) a partir de medições gravíticas de satélite

  • Paper
  • Published:
Hydrogeology Journal Aims and scope Submit manuscript

Abstract

In this study, regional evapotranspiration is estimated in a wide flatland area that includes Salado River Basin and four tributary basins by using gravity measurements of the space mission Gravity Recovery and Climate Experiment (GRACE). Monthly estimates of large-scale variations in the land-water storage are obtained from the satellite data. Evapotranspiration is computed with the water-balance equation using the GRACE land-water solutions, rainfall data from the Global Precipitation Climatology Center and runoff values obtained as 5% of the precipitation. GRACE-derived evapotranspiration values are consistent with the different climatic scenarios observed, and they satisfactorily agree with estimates provided by a global hydrological model. The overall results show that the method used is a valid tool for characterizing the evapotranspiration in the Argentine Pampas and that it can be used to detect and examine changes in the evapotranspiration pattern associated with the occurrence of extreme climatic events. This study illustrates the ability of GRACE to analyze and predict evapotranspiration and other processes on a regional scale in a flatland area.

Résumé

Dans cette étude, l’évapotranspiration régionale est évaluée sur un large secteur topographiquement plat, qui inclut le bassin versant du Salado et quatre bassins tributaires, en utilisant les mesures de gravité de la mission spatiale Gravity Recovery and Climate Experiment (GRACE). L’estimation mensuelle des variations à grande échelle du stockage d’eau dans le sol est obtenue à partir des données satellites. L’évapotranspiration est calculée en utilisant l’équation de bilan incluse dans le modèle eau terrestre de GRACE, les hauteurs de pluies provenant du Global Precipitation Climatology Center et les valeurs de ruissellement considérées comme équivalant à 5% des précipitations. Les valeurs d’évapotranspiration tirées de GRACE sont compatibles avec les différents scénarii climatiques observés et avec les évaluations fournies par un modèle hydrologique global. L’ensemble des résultats montre que la méthode utilisée est un outil valable pour caractériser l’évapotranspiration dans la pampa argentine et qu’il peut être utilisé pour détecter et examiner les changements du modèle d’évapotranspiration associé à l’occurrence d’événements climatiques extrêmes. Cette étude illustre la capacité de GRACE à analyser et prévoir l’évapotranspiration ou d’autres processus à une échelle régionale dans un secteur topographiquement plat.

Resumen

En en el presente estudio, se estima la evapotranspiración regional en una extensa área de llanura que incluye a la cuenca del Río Salado y cuatro cuencas tributarias utilizando mediciones de gravedad de la misión espacial Gravity Recovery and Climate Experiment (GRACE). A partir de los datos satelitales se obtienen estimaciones mensuales de las variaciones a gran escala en el almacenamiento de agua continental. La evapotranspiración se calcula con la ecuación de balance de agua utilizando las estimaciones obtenidas con GRACE, datos de precipitación del Global Precipitation Climatology Center y valores de escurrimiento superficial obtenidos como el 5% de la precipitación. Los valores de evapotranspiración calculados utilizando GRACE son consistentes con los diferentes escenarios climáticos observados, y concuerdan satisfactoriamente con las estimaciones provistas por modelos hidrológicos globales. Los resultados generales muestran que el método utilizado es una herramienta válida para la caracterización de la evapotranspiración en la región pampeana argentina y que puede ser usado para detectar y evaluar cambios en el patrón de evapotranspiración asociados con la ocurrencia de eventos climáticos extremos. Este estudio ilustra la utilidad de GRACE para analizar y predecir la evapotranspiración y otros procesos a escala regional en un área de llanura.

摘要

在本次研究中, 利用太空任务重力恢复与气候实验(GRACE)的重力资料估计包括萨拉多河流域和四个支流流域在内的宽广平原的区域蒸散发量。通过卫星数据获得对大地蓄水量大尺度变化的按月估计值。利用GRACE水土信息解译、从全球降雨气候中心得到的降雨量数据及获得的相当于降水量的5%的径流量之间的水平衡等式计算蒸散发量。利用GRACE推导得到的蒸散发值与观察到的不同气候场景的值相一致, 且与由全球水文模型提供的估计值高度一致。全部结果显示采用的方法是描述阿根廷潘帕斯平原的蒸散发量有效工具, 且可以将蒸散发量与极端气候事件的联系起来研究, 用于探测和调查蒸散发类型的变化。本研究阐明了GRACE分析和预测平原区蒸散发量及区域尺度上的其他过程的能力。

Resumo

No presente estudo, a evapotranspiração regional é estimada numa extensa área aplanada que inclui a Bacia do rio Salado e quatro bacias tributárias, através de medições de gravidade da missão espacial “Gravity Recovery and Climate Experiment” (GRACE). Estimações mensais de variações de grande escala do armazenamento de água na terra são obtidas a partir da informação de satélite. A evapotranspiração é calculada através da equação do balanço de água, usando soluções do GRACE para a água no terreno, informação relativa à precipitação proveniente do Centro Global de Precipitação e Climatologia, e valores de escoamento superficial que se assumem como sendo 5% da precipitação. Os valores de evapotranspiração obtidos através do GRACE concordam com os diferentes cenários climáticos observados, e estão satisfatoriamente de acordo com as estimações fornecidas por um modelo hidrológico global. De um modo geral, os resultados mostram que o método usado é um instrumento válido para caracterizar a evapotranspiração nas Pampas argentinas e que pode ser usado para determinar e examinar mudanças nos padrões de evapotranspiração associadas à ocorrência de eventos climáticos extremos. Este estudo ilustra a capacidade do GRACE para analisar e prever a evapotranspiração e outros processos a uma escala regional numa área aplanada.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Andersen OB, Seneviratne SI, Hinderer J, Viterbo P (2005) GRACE-derived terrestrial water storage depletion associated with the 2003 European heat wave. Geophys Res Lett 32:L18405. doi:10.1029/2005GL023574

    Article  Google Scholar 

  • Aradas RD, Loid J, Wicks J et al. (2002) Groundwater problems in low elevations regional plains: the Buenos Aires province example. In: Bocanegra E, Martínez D, Massone H (eds) Groundwater and human development. Proceedings XXXII IAH and VI AHLSUD Congress, Mar del Plata, Argentina, October 2002, pp 624–633

  • Arguez A (ed) (2007) State of the climate in 2006. Bull Am Meterolog Soc 88(6): S1-S135

  • Arndt DS, Baringer MO, Johnson MR (eds) (2010) State of the climate in 2009. Bull Am Meteorolog Soc 91 (7):S1–S224

    Google Scholar 

  • Auge M (2001) Hidrogeología de La Plata, Argentina [Hydrogeology of La Plata, Argentina]. Rev Latinoam Hidrogeol 1:27–40

    Google Scholar 

  • Bettadpur S (2007) CSR Level-2 Processing Standards Document for Product Release 04, GRACE 327-742. The GRACE Project Center for Space Research. University of Texas, Austin

    Google Scholar 

  • Bonorina A, Ramillien G (2008) Application of AVGRR imagery and GRACE measurements for calculation of actual evapotranspiration over the Quaternary aquifer (Lake Chad basin) and validation of groundwater models. J Hydrol 348:98–109

    Article  Google Scholar 

  • Brunner P, Hendricks Franssen H-J, Kgotlhang L, Bauer-Gottwein P, Kinzelbach W (2007) How can remote sensing contribute in groundwater modeling? Hydrogeol J 15:5–18

    Article  Google Scholar 

  • Cacik P, Aradas R, Tavecchio H (2000) Simulación hidrológica del Río Salado Superior: nor-Oeste de la Provincia de Buenos Aires [Simulation of the hydrologic system in the Upper Salado River: northwest of Buenos Aires Province]. Proc XVIII Water National Congress, Termas de Río Hondo, Argentina, June 2000, pp 7–8

  • Carbó LI, Flores MC, Herrero MA (2009) Well site conditions associated with nitrate contamination in a multilayer semiconfined aquifer of Buenos Aires, Argentina. Environ Geol 57:1489–1500

    Article  Google Scholar 

  • Carol ES, Kruse EE, Pousa JL (2010) Eco-hydrological role of deep aquifers in the Salado sedimentary basin in the Province of Buenos Aires, Argentina. Environ Earth Sci 60:749–756

    Article  Google Scholar 

  • Couralt D, Seguin B, Olioso A (2005) Review on estimation of evapotranspiration from remote sensing data: from empirical to numerical modeling approaches. Irrig Drain Syst 19:223–249

    Article  Google Scholar 

  • Di Bella CM, Rebella CM, Paruelo JM (2000) Evapotranspiration estimates using NOAA AVHRR imagery in the Pampa region of Argentina. Int J Remote Sens 21(4):791–797

    Article  Google Scholar 

  • Dziewonski A, Anderson DL (1981) Preliminary reference Earth model. Phys Earth Planet Inter 25:297–356

    Article  Google Scholar 

  • Ek MB, Mitchell KE, Lin Y, Rogers E, Grunmann P, Koren V, Gayno G, Tarpley JD (2003) Implementation of Noah land surface model advances in the National Centers for Environmental Prediction operational mesoscale Eta model. J Geophys Res 108(D22):88521. doi:10.1029/2002JD003296

    Article  Google Scholar 

  • Güntner A, Schmidt R, Doll P (2007) Supporting large-scale hydrogeological monitoring and modelling by time-variable gravity data. Hydrogeol J 15(1):167–170

    Article  Google Scholar 

  • Herzer H (2003) Flooding in the Pampean region of Argentina: the Salado Basin. In: Kreimer A, Arnold M, Carlin A (eds) Building safer cities: the future of disaster risk. The World Bank, Washington, DC

    Google Scholar 

  • Hofmann-Wellenhof B, Moritz H (2005) Physical geodesy. Springer, Vienna

    Google Scholar 

  • Kadioğlu M, Şen Z (2001) Monthly precipitation-runoff polygons and mean runoff coefficients. Hydrol Sci J 46(1):3–11

    Article  Google Scholar 

  • Kruse E, Laurencena P (2005) Aguas Superficiales: relación con el régimen subterráneo y fenómenos de anegamiento [Surface waters: relationship with groundwater system and waterlogging processes]. In: de Barrio RE, Etcheverry RO, Caballé MF, Llambías E (eds) Geología y Recursos Minerales de la Provincia de Buenos Aires [Geology and mineral resources of Buenos Aires Province]. La Plata, Argentina

    Google Scholar 

  • Kruse E, Laurencena P, Deluchi M et al (2007) Influencia de los niveles freáticos en el funcionamiento hidrológico regional del noroeste de la Provincia de Buenos Aires, Argentina [Influence of water table levels in the regional hydrologic system in the northwest of Buenos Aires Province, Argentina]. Proc 5th Argentinian Hydrogeological Congress. Paraná, Argentina, October 2007, pp 400–408

  • Levinson D (ed) (2005) State of the climate in 2004. Bull Am Meterolog Soc 86(6):S1–S86

    Google Scholar 

  • Levinson D, Lawrimore J (eds) (2008) State of the climate in 2007. Bull Am Meterolog Soc 89 (7):S1–S179

    Google Scholar 

  • Morishita Y, Heki K (2008) Characteristic precipitation patterns of El Niño/La Niña in time-variable gravity fields by GRACE. Earth Planet Sci Lett 272:677–682

    Article  Google Scholar 

  • Mota GV (2003) Characteristics of rainfall and precipitation features defined by the Tropical Rainfall Measuring Mission over South America. PhD Thesis, University of Utah, USA, 215 pp

  • Peterson T, Baringer M (eds.) (2009) State of the climate in 2008. Bull Am Meterolog Soc 90(8):S1–S196

    Google Scholar 

  • Ramillien G, Frappart F, Güntner A, Ngo-Duc T, Cazenave A, Laval K (2006) Time variations of the regional evapotranspiration rate from Gravity Recovery and Climate Experiment (GRACE) satellite gravimetry. Water Resour Res 42:W10403. doi:10.1029/2005WR004331

    Article  Google Scholar 

  • Rivas R, Caselles V (2004) A simplified equation to estimate spatial reference evaporation from remote sensing-based surface temperature and local meteorological data. Remote Sens Environ 93:68–76

    Article  Google Scholar 

  • Rodell M, Famiglietti JS, Chen J, Seneviratne SI, Viterbo P, Holl S, Wilson CR (2004a) Basin scale estimate of evapotranspiration using GRACE and other observations. Geophys Res Lett 31:L20504. doi:10.1029/2004GL020873

    Article  Google Scholar 

  • Rodell M, Houser PR, Jambor U, Gottschalck J, Mitchell K, Meng C-J, Arsenault K, Cosgrove B, Radakovich J, Bosilovich M, Entin JK, Walker JP, Lohmann D, Toll D (2004b) The global land data assimilation system. Bull Am Meterolog Soc 85:381–394

    Article  Google Scholar 

  • Rodell M, Chen J, Kato H, Famiglietti JS, Nigro J, Wilson CR (2007) Estimating groundwater storage changes in the Mississippi River basin (USA) using GRACE. Hydrogeol J 15:159–166

    Article  Google Scholar 

  • Rodell M, Velicogna I, Famiglietti JS (2009) Satellite-based estimates of groundwater depletion in India. Nature 460(7258):999–U80

    Article  Google Scholar 

  • Rudolf B, Schneider U (2005) Calculation of gridded precipitation data for the global land-surface using in-situ gauge observations. Proc 2nd Workshop of the International Precipitation Working Group IPWG, Monterey, CA, October 2004

  • Rudolf B, Hauschild H, Rueth W, Schneider U (1994) Terrestrial precipitation analysis: operational method and required density of point measurements. In: Desbois M, Desalmond F (eds) Global precipitations and climate change. NATO ASI Series I. Springer, Heidelberg

    Google Scholar 

  • Sacchi O, Coronel A, Constanzo M (2008) Comparación entre el índice de severidad de sequías de Palmer original y el autocalibrado en el sur santafesino [Comparison of the original and auto-calibrated Palmer drought severity index in southern Santa Fe]. Rev Investigacion Facult Ciencias Agrarias 13(July 2008). Available at: http://www.fcagr.unr.edu.ar/Investigacion/revista/rev13/5.htm. Cited January 2011

  • Sala JM, Hernández MA, Kruse EE (1982) Groundwater regime forecasting with inadequate data in Argentina. In: Proc Exeter Symp, IAHS Publ. no. 136, IAHS, Wallingford, UK, pp 315–324

  • Sala JM, González N, Kruse E (1983) Generalización hidrológica de la Provincia de Buenos Aires [Hydrological generalization of Buenos Aires province]. In: Proc Symp of Great Flatlands Hydrology, Olavarría, Argentina, April, 1983

  • Santa Cruz JN, Silva Busso A (1999) Escenario Hidrogeológico General de los Principales Acuíferos de la Llanura Pampeana y Mesopotamia Meridional Argentina [General hydrogeological scenario of the main aquifers of the Argentine Pampean Plain and Meridional Mesopotamia]. In: Proc II Argentine Hydrogeological Congress, vol 1, Tucumán, Argentina, September, 1999, pp 461–473

  • Scarpati OE, Spescha L, Capriolo A (2002) Ocurrence of severe floods in the Salado River Basin, Buenos Aires Province, Argentina. Mitig Adapt Strateg Glob Change 7:285–301

    Article  Google Scholar 

  • Shein K (ed) (2006) State of the climate in 2005. Bull Am Meterolog Soc 87(6):S1–S102

    Google Scholar 

  • Strassberg G, Bridget RS, Rodell M (2007) Comparison of seasonal terrestrial water storage variations from GRACE with groundwater-level measurements from the High Plains Aquifer (USA). Geophys Res Lett 34:L14402. doi:10.1029/2007GL030139

    Article  Google Scholar 

  • Subsecretaría de Recursos Hídricos de la Nación (SRHN) and Instituto Nacional del Agua (INA) (2002) Atlas digital de los Recursos Hídricos Superficiales de la República Argentina [Digital Atlas of the Hydrologic Surface Resources of Argentina]. SRHN and INA, Buenos Aires, Argentina, available on CD-Rom

  • Swenson S, Wahr J (2006) Post-processing removal of correlated errors in GRACE data. Geophys Res Lett 33:L08402. doi:10.1029/2005GL025285

    Article  Google Scholar 

  • Swenson S, Yeh PJ-F, Wahr J, Famiglietti J (2006) A comparison of terrestrial water storage variations from GRACE with in situ measurements from Illinois. Geophys Res Lett 33:L16401. doi:10.1029/2006GL026962

    Article  Google Scholar 

  • Swenson S, Famiglietti J, Basara J, Wahr J (2008) Estimating profile soil moisture and groundwater variations using GRACE and Oklahoma Mesones soil moisture data. Water Resour Res 44:W01413. doi:10.1029/2007WR006057

    Article  Google Scholar 

  • Syed TH, Famiglietti JS, Chen J, Rodell M, Seneviratne SI, Viterbo P, Wilson CR (2005) Total basin discharge for the Amazon and Mississippi River basins from GRACE and a land-atmosphere water balance. Geophys Res Lett 32:L24404. doi:10.1029/2005GL024851

    Article  Google Scholar 

  • Syed TH, Famiglietti JS, Rodell M, Chen J, Wilson CR (2008) Analysis of terrestrial water storage changes from GRACE and GLDAS. Water Resour Res 44:W02433. doi:10.1029/2006WR005779

    Article  Google Scholar 

  • Tanco R, Kruse E (2001) Prediction of seasonal water-table fluctuations in La Pampa and Buenos Aires, Argentina. Hydrogeol J 9:339–347

    Article  Google Scholar 

  • Tapley BD, Bettadpur S, Watkins M, Reigber C (2004) The gravity recovery and climate experiment: mission overview and early results. Geophys Res Lett 31:L09607. doi:10.1029/2004GL019920

    Article  Google Scholar 

  • Varni M, Usunoff E (1999) Simulation of regional-scale groundwater flow in the Azul River basin, Buenos Aires Province, Argentina. Hydrogeol J 7:180–187

    Article  Google Scholar 

  • Vázquez P, Masuelli S, Platzeck G et al. (2007) Recurrencia de anegamiento en la depresión del río Salado: subcuenca B4 [Waterlogging recurrence of Salado River sub-basin B4]. Proc XII Spanish Association of Remote Sensing Congress, Mar del Plata, Argentina, September 2007, pp 171–178

  • Viglizzo EF, Jobbágy EG, Carreño L, Franck FC, Arragón R, De Oro L, Salvador V (2009) The dynamics of cultivation and floods in arable lands of central Argentina. Hydrol Earth Syst Sci 13:491–502

    Article  Google Scholar 

  • Wahr J, Molenaar M, Bryan F (1998) Time-variability of the Earth’s gravity field: hydrological and oceanic effects and their possible detection using GRACE. J Geophys Res 103(B12):30205–30230

    Article  Google Scholar 

  • Waple A, Lawrimore J (eds) (2003) State of the climate in 2002. Bull Am Meterolog Soc 84(6):S1–S68

    Google Scholar 

  • Yeh PJF, Swenson SC, Famiglietti JS, Rodell M (2006) Remote sensing of groundwater storage changes in Illinois using the Gravity Recovery and Climate Experiment (GRACE). Water Resour Res 42:W12203. doi:10.1029/2006WR005374

    Article  Google Scholar 

  • Yirdaw SZ, Snelgrove KR, Agboma CO (2008) GRACE satellite observations of terrestrial moisture changes for drought characterization in the Canadian Prairie. J Hydrol 356:84–92

    Article  Google Scholar 

Download references

Acknowledgements

The GPCC data used in this study was provided by Deutscher Wetterdienst (DWD) under the auspices of the World Meteorological Organization (WMO). GLDAS data were acquired as part of the mission of NASA´s Earth Science Division and archived and distributed by the Goddard Earth Sciences (GES) Data and Information Services Center (DISC). The authors are thankful to the GRACE science team and CSR for providing the GRACE monthly gravity fields.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Andrés Cesanelli.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Cesanelli, A., Guarracino, L. Estimation of regional evapotranspiration in the extended Salado Basin (Argentina) from satellite gravity measurements. Hydrogeol J 19, 629–639 (2011). https://doi.org/10.1007/s10040-011-0708-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10040-011-0708-3

Keywords

Navigation