Skip to main content
Log in

Effect of hypersaline cooling canals on aquifer salinization

Effet d’un canal de refroidissement hypersalin sur la salinisation d’un aquifère

Efectos de los canales de enfriamiento hipersalinos en la salinización de los acuíferos

超咸冷却管道对含水层盐化的效应

Efeito de canais de refrigeração hipersalinos na salinização de aquíferos

  • Paper
  • Published:
Hydrogeology Journal Aims and scope Submit manuscript

Abstract

The combined effect of salinity and temperature on density-driven convection was evaluated in this study for a large (28 km2) cooling canal system (CCS) at a thermoelectric power plant in south Florida, USA. A two-dimensional cross-section model was used to evaluate the effects of hydraulic heterogeneities, cooling canal salinity, heat transport, and cooling canal geometry on aquifer salinization and movement of the freshwater/saltwater interface. Four different hydraulic conductivity configurations, with values ranging over several orders of magnitude, were evaluated with the model. For all of the conditions evaluated, aquifer salinization was initiated by the formation of dense, hypersaline fingers that descended downward to the bottom of the 30-m thick aquifer. Saline fingers reached the aquifer bottom in times ranging from a few days to approximately 5 years for the lowest hydraulic conductivity case. Aquifer salinization continued after saline fingers reached the aquifer bottom and coalesced by lateral movement away from the site. Model results showed that aquifer salinization was most sensitive to aquifer heterogeneity, but was also sensitive to CCS salinity, temperature, and configuration.

Résumé

L’effet combiné de la salinité et la température sur la convection due à la densité a été évalué dans cette étude pour un large (28 km2) canal du système de refroidissement (CCS) d’une centrale hydroélectrique de production d’énergie du sud de la Floride, Etats-Unis. Une coupe transversale en deux dimensions a été utilisée pour évaluer les effets des hétérogénéités hydrauliques, de la salinité du canal de refroidissement, du transport de chaleur et de la géométrie du canal sur la salinisation d’un aquifère et les mouvements à l’interface eau douce-eau salée. Quatre configurations de conductivité hydraulique, avec des valeurs variant de plusieurs ordres de grandeur, ont été évaluées avec un modèle. Pour toutes les conditions évaluées, la salinisation de l’aquifère a commencé par la formation de doigts de forte densité et salinité descendant vers le fond de l’aquifère de 30 m d’épaisseur. Les doigts salés ont atteint le fond de l’aquifère après un temps variant de quelques jours à 5 ans environ dans le cas des plus faibles conductivités hydrauliques. La salinisation de l’aquifère a continué après que les doigts salés aient atteint le fond de l’aquifère et aient fusionnés par des mouvements latéraux en dehors du site. Les résultats du modèle montrent que la salinisation de l’aquifère a été très sensible à l’hétérogénéité de l’aquifère et également à la salinité, température et configuration du CCS.

Resumen

En este estudio se evaluó el efecto combinado de la salinidad y la temperatura sobre la convección forzada por la densidad del sistema del canal de enfriamiento (CCS) de un área (28 km2), en una planta de energía termoeléctrica en el sur de Florida, EEUU. Se usó un modelo bidimensional de sección transversal para evaluar los efectos de las heterogeneidades hidráulicas, la salinidad del canal de enfriamiento, el transporte de calor, y la geometría del canal de enfriamiento sobre la salinización de un acuífero y movimiento de la interfase agua dulce - agua salada. Con el modelo se evaluaron cuatro configuraciones diferentes de conductividad hidráulica, con valores que abarcaron varios órdenes de magnitud. Para todas las condiciones evaluadas, la salinización del acuífero se inició con la formación de densas interdigitaciones que descienden la base del acuífero de 30 m de espesor. Las interdigitaciones salinas alcanzaron la base del acuífero en tiempos que fluctuaron desde unos pocos días y 5 años aproximadamente para el caso de la menor conductividad hidráulica. La salinización del acuífero continúa después que la digitazación alcanza en la base del acuífero y es coalescente fuera del sitio por movimientos laterales. Los resultados del modelo mostraron que la salinización del acuífero era más sensitiva a la heterogeneidad del acuífero, pero que también era sensitiva a la salinidad, temperatura y configuración del CCS.

摘要

本研究针对美国佛罗里达南部某热电厂的大型冷却管道系统(ccs)估算了盐度和温度对于密度驱动的对流的耦合影响。在某二维剖面上估算水力非均质、冷却管道的盐度和形状、及热传递对含水层盐化和淡水-咸水界面运动的影响。应用该模型评估了四种不同渗透系数结构 (渗透系数相差几个量级) 。所有条件下, 含水层盐化皆由30m厚含水层中的稠密、超咸、向底部下降的指进触发。咸指进体抵达含水层底所需时间为自几天至渗透系数最低时的约5年。其后盐化继续发生, 并因离开该场地的侧向运动而发生合并。模拟结果显示, 含水层盐化对含水层非均质性最为敏感, 但对CCS盐度、温度和结构亦然。

Resumo

Neste estudo foi avaliado o efeito combinado da salinidade e da temperatura na convecção provocada pela densidade para um grande (28 km2) sistema de canais de arrefecimento (SCA) numa central termoeléctrica no sul da Flórida, EUA. Utilizou-se um modelo bidimensional de secção transversal para avaliar os efeitos das heterogeneidades hidráulicas, da salinidade do canal de refrigeração, do transporte de calor e da geometria do canal de refrigeração na salinização do aquífero e na deslocação da interface de água doce-água salgada. Com base no modelo, foram avaliadas quatro configurações de condutividade hidráulica diferentes, com os valores a variar entre várias ordens de grandeza. Para todas as condições avaliadas, a salinização do aquífero iniciou-se através de formas semelhantes a “dedos” de sal densos e hipersalinos, que desceram à base do aquífero, com 30 m de espessura. Esses “dedos” de sal atingiram a base do aquífero em tempos que variavam de alguns dias a sensivelmente 5 anos, para o caso da condutividade hidráulica mais baixa. A salinização do aquífero continuou, através de coalescência, por movimento lateral, após os “dedos” terem atingido a base do aquífero. Os resultados dos modelos mostraram que a salinização do aquífero foi mais sensível à heterogeneidade do mesmo, mas foi também sensível à salinidade, temperatura e configuração do SCA.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  • Chen F, Chen CF (1993) Double-diffusive fingering convection in a porous medium. Int J Heat Mass Transfer 36(3):793–807

    Article  Google Scholar 

  • Cunningham KJ, Wacker MA, Robinson E, Dixon JF, Wingard GL (2006) A cyclostratigraphic and borehole-geophysical approach to development of a three-dimensional conceptual hydrogeologic model of the karstic Biscayne aquifer, southeastern Florida. US Geol Surv Sci Invest Rep 2005-5235

  • Cunningham KJ, Sukop MC, Huang H, Alvarez PF, Curran HA, Renken RA, Dixon JF (2009) Prominence of ichnologically-influenced macroporosity in the karst Biscayne aquifer: stratiform “super-K” zones. Geol Soc Am Bull 121(1–2):164–180

    Google Scholar 

  • Dames, Moore (1989) Annual report, August 1989, ground-water monitoring program, Turkey Point, Florida, Florida Power and Light Company. Job no. 04598-145-40, Florida Power and Light, Boca Raton, FL

  • Dausman AM, Langevin CD, Thorne DT Jr., Sukop MC (2009) Application of SEAWAT to select variable-density and viscosity problems. US Geol Surv Sci Invest Rep 2009–5028

  • Diersch HJG, Kolditz O (1998) Coupled groundwater flow and transport: 2, thermohaline and 3D convection systems. Adv Water Resour 21:401–425. doi:10.1016/S0309-1708(97)00003-1

    Article  Google Scholar 

  • Fan Y, Duffy CJ, Oliver DS (1997) Density-driven groundwater flow in closed desert basins: field investigation and numerical experiments. J Hydrol 196:139–184

    Article  Google Scholar 

  • Fish JE (1988) Hydrogeology, aquifer characteristics, and ground-water flow of the surficial aquifer system, Broward County, Florida. US Geol Surv Water Resour Invest Rep 87–4034

  • Fish JE, Stewart M (1991) Hydrogeology of the surficial aquifer system, Dade County, Florida. US Geol Surv Sci Invest Rep 90–4108

  • Florida Power and Light (2000) Applicants environmental report: operating license renewal stage Turkey Point units 3 & 4. Florida Power and Light Company Docket Nos. 50–250 and 50–251 revision 1, Florida Power and Light, Boca Raton, FL. http://www.nrc.gov/reactors/operating/licensing/renewal/applications/turkey-point/er.pdf. Cited 28 November 2008

  • Gaby R, McMahon MP, Mazzotti FJ, Gillies WN, Wilcox JR (1985) Ecology of a population of Crocodylus acutus at a power plant site in Florida. J Herpetol 19(2):189–198

    Article  Google Scholar 

  • German ER (2000) Regional Evaluation of Evapotranspiration in the Everglades. US Geol Surv Sci Invest Rep 00–4217

  • Guo W, Langevin CD (2002) User’s guide to SEAWAT: a computer program for simulation of three-dimensional variable-density ground-water flow. US Geol Surv Tech Water Resour Invest book 6, chap. A7, US Geological Survey, Reston, VA

  • Griffiths RW (1981) Layered double-diffusive convection in porous media. J Fluid Mech 102:221–248

    Article  Google Scholar 

  • Harbaugh AW, Banta ER, Hill MC, McDonald MG, (2000) MODFLOW-2000, the U.S. Geological Survey modular ground-water model: user guide to modularization concepts and the ground-water flow process. US Geol Surv Open-File Rep 00-92

  • Holzbecher E (2005) Groundwater flow pattern in the vicinity of a salt lake. Hydrobiologica 532:233–242

    Article  Google Scholar 

  • King CW, Holman AS, Webber ME (2008) Thirst for energy. Nat Geosci 1(5):283–286. doi:10.1038/ngeo195

    Article  Google Scholar 

  • Langevin CD (2001) Simulation of ground-water discharge to Biscayne Bay, Southeastern Florida. US Geol Surv Water Resour Invest Rep 00–4251

  • Langevin CD (2003) Simulation of submarine ground water discharge to a marine estuary: Biscayne Bay, Florida. Ground Water 41(6):758–771

    Article  Google Scholar 

  • Langevin CD, Guo W (2006) MODFLOW/MT3DMS-based simulation of variable density ground water flow and transport. Ground Water 44(3):339–351

    Article  Google Scholar 

  • Langevin CD, Shoemaker WB, Guo W (2003) MODFLOW-2000, the US Geological Survey modular ground-water model: documentation of the SEAWAT-2000 version with the variable-density flow process (VDF) and the integrated MT3DMS transport process (IMT). US Geol Surv Open-File Rep 03–426

  • Langevin CD, Thorne DT, Dausman AM, Sukop MC, Guo W (2007) SEAWAT Version 4: a computer program for simulation of multi-species solute and heat transport. US Geol Surv Tech Methods, book 6, chap. A22, US Geological Survey, Reston, VA

  • Langevin CD, Dausman AM, Sukop MC (2009) Solute and heat transport model of the Henry and Hilleke laboratory experiment. Ground Water. doi:10.1111/j.1745-6584.2009.00596.x

    Google Scholar 

  • Liu HH, Dane JH (1997) A numerical study on gravitational instabilities of dense aqueous phase plumes in three-dimensional porous media. J Hydrol 194:126–142

    Article  Google Scholar 

  • Lyerly RL (1998) Thermal performance of the Turkey Point cooling canal system in 1998. Report prepared for Florida Power and Light, Miami, FL

    Google Scholar 

  • Menand T, Woods AW (2005) Dispersion, scale, and time dependence of mixing zones under gravitationally stable and unstable displacements in porous media. Water Resour Res 41, W05014. doi:10.1029/2004WR003701

    Article  Google Scholar 

  • Nield DA (1968) Onset of thermohaline convection in a porous medium. Water Resour Res 4:553–560

    Article  Google Scholar 

  • Nield DA, Simmons CT, Kuznetsov AV, Ward JD (2008) On the evolution of salt lakes: episodic convection beneath an evaporating salt lake. Water Resour Res 44, W02439. doi:10.1029/2007WR006161

    Article  Google Scholar 

  • Noble CV, Drew RW, Slabaugh JD (1996) Soil survey of Dade County area, Florida. Natural Resources Conservation Service, USDA, Washington, DC

    Google Scholar 

  • Oldenburg CM, Pruess K (1998) Layered thermohaline convection in hypersaline geothermal systems. Transp Porous Media 33:29–63

    Article  Google Scholar 

  • Oostrom M, Hayworth JS, Dane JH, Güven O (1992) Behavior of dense aqueous phase leachate plumes in homogeneous porous media. Water Resour Res 28(8):2123–2134

    Article  Google Scholar 

  • Post VEA, Kooi H (2003) Rates of salinization by free convection in high-permeability sediments: insights from numerical modeling and application to the Dutch coastal area. Hydrogeol J 11:549–559. doi:10.1007/s10040-0030927107

    Article  Google Scholar 

  • Reese RS, Cunningham KJ (2000) Hydrogeology of the Gray Limestone Aquifer in southern Florida. US Geol Surv Sci Invest Rep 99–4213

  • Renken RA, Cunningham KJ, Shapiro AM, Harvey RW, Zygnerski MR, Metge DW, Wacker MA (2008) Pathogen and chemical transport in the karst limestone of the Biscayne aquifer: 1, revised conceptualization of groundwater flow. Water Resour Res 44(8), W08429. doi:10.1029/2007WR006058

    Article  Google Scholar 

  • Rubin H (1982) Thermohaline convection in a nonhomogeneous aquifer. J Hydrol 57(3–4):307–320. doi:10.1016/0022-1694(82)90153-6

    Article  Google Scholar 

  • Rubin H, Roth C (1979) On the growth of instabilities in groundwater due to temperature and salinity gradients. Adv Water Resour 2:69–76. doi:10.1016/0309-1708(79)90013-7

    Article  Google Scholar 

  • Rubin H, Roth C (1983) Thermohaline convection in flowing groundwater. Adv Water Resour 6:146–156. doi:10.1016/0309-1708(83)90027-1

    Article  Google Scholar 

  • Sanford WE, Wood WW (2001) Hydrology of coastal sabkhas of Abu Dhabi, United Arab Emirates. Hydrogeol J 9:358–366

    Article  Google Scholar 

  • Schincariol RA, Schwartz FW (1990) An experimental investigation of variable density flow and mixing in homogeneous and heterogeneous media. Water Resour Res 26(10):2317–2329

    Google Scholar 

  • Shapiro AM, Renken RA, Harvey RW, Zygnerski MR, Metge DW (2008) Pathogen and chemical transport in the karst limestone of the Biscayne aquifer: 2, chemical retention from diffusion and slow advection. Water Resour Res 44(8), W08430. doi:10.1029/2007WR006059

    Article  Google Scholar 

  • Shoemaker WB, Cunningham KJ, Kuniansky EL, Dixon J (2008) Effects of turbulence on hydraulic heads and parameter sensitivities in preferential groundwater flow layers. Water Resour Res 44, W03501. doi:10.1029/2007WR006601

    Article  Google Scholar 

  • Simmons CT, Narayan KA, Wooding RA (1999) On a test case for density-dependent groundwater flow and solute transport models: the salt lake problem. Water Resour Res 35:3607–3620

    Article  Google Scholar 

  • Simmons CT, Fenstemaker TR, Sharp JM (2001) Variable-density groundwater flow and solute transport in heterogeneous porous media: approaches, resolutions and future challenges. J Contam Hydrol 52:245–275

    Article  Google Scholar 

  • US Department of Energy (2000) Year 2000 annual steam-electric plant operation and design data. Department of Energy Form EIA-767 data file, USDOE, Washington, DC. http://www.eia.doe.gov/cneaf/electricity/page/eia767hist.html. Cited 25 November 2008

  • US Department of Energy (2005) Year 2005 annual steam-electric plant operation and design data. Department of Energy Form EIA-767 data file, USDOE, Washington, DC. http://www.eia.doe.gov/cneaf/electricity/page/eia767.html. Cited 25 November 2008

  • US Nuclear Regulatory Commission (2002) Generic environmental impact statement for license renewal of nuclear plants, Turkey Point Plant, Units 3 and 4. NUREG-1437, supplement 5, US Nuclear Regulatory Commission, Washington, DC. http://www.nrc.gov/reading-rm/doc-collections/nuregs/staff/sr1437/supplement5/index.html. Cited 25 November 2008

  • Yang X, Dziegielewski B (2007) Water use by thermoelectric power plants in the United States. J Am Water Resour Assoc 43(1):160–169. doi:10.1111/j.1752-1688.2007.00013.x

    Article  Google Scholar 

  • Yechieli Y, Wood WW (2002) Hydrogeologic processes in saline systems: playas, sabkhas, and saline lakes. Earth Sci Rev 58:343–365

    Article  Google Scholar 

  • Zheng C, Wang PP (1999) MT3DMS, a modular three-dimensional multispecies model for simulation of advection, dispersion and chemical reactions of contaminants in groundwater systems: documentation and User’s Guide. US Army Engineer Research and Development Center Contract Report SERDP-99-1. USAERDC, Vicksburg, MI

Download references

Acknowledgments

The authors would like to thank J. D. Decker (US Geological Survey), R. Renken (US Geological Survey), and V. Walsh (Miami-Dade Water and Sewer Department) for reviewing an earlier version of the manuscript. Reviewers for Hydrogeology Journal (E. Abarca, W. E. Sanford, and two anonymous reviewers) provided excellent suggestions that greatly improved the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Joseph D. Hughes.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hughes, J.D., Langevin, C.D. & Brakefield-Goswami, L. Effect of hypersaline cooling canals on aquifer salinization. Hydrogeol J 18, 25–38 (2010). https://doi.org/10.1007/s10040-009-0502-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10040-009-0502-7

Keywords

Navigation