Skip to main content
Log in

First attempts towards an integrative concept for the ecological assessment of groundwater ecosystems

Premiers essais vers un concept intégré de l’évaluation écologique des écosystèmes des eaux souterraines

Ökologische Beurteilung von Grundwasserökosystemen: erste Schritte zurEntwicklung eines integrativen Konzeptes

Primeros intentos hacia un enfoque integrador para la evaluación ecológica de ecosistemas en aguas subterráneas

Primeiras tentativas para definir um conceito integrador na avaliação ecológicados ecossistemas em águas subterrâneas

  • Paper
  • Published:
Hydrogeology Journal Aims and scope Submit manuscript

Abstract

Healthy aquifers deliver important ecosystem services, e.g. the purification of infiltrating water and the storage of high-quality water over decades in significant quantities. The functioning of terrestrial and surface aquatic ecosystems directly depends on groundwater and vice versa. Nowadays, legislation has started to consider groundwater not only as a resource but as a living ecosystem. The assessment of ecosystems requires consideration of ecological criteria, which, so far, are not available for groundwater systems. In the framework of a project supported by the German Federal Environment Agency (UBA), a first concept for the ecological assessment of groundwater ecosystems is developed. Steps to be taken are introduced, with a strong focus on microbes as potential bioindicators. These include (1) the typology of groundwater ecosystems, (2) the derivation of natural background values, (3) the identification of potential bioindicators, and (4) the development of an assessment model. First successes and difficulties associated with these challenges, e.g. the lack of simple correlations between abiotic and biotic variables, are discussed on the basis of a data set from a local and regional aquifer in NE Germany. The need for collaboration between ecologists, hydrogeologists and geochemists, as well as the application of modern approaches such as multivariate statistics, is emphasized.

Résumé

Premiers essais vers un concept intégré de l’évaluation écologique des écosystèmes des eaux souterrainesLes aquifères en bonne santé rendent des services importants aux écosystèmes, comme par exemple la purification de l’infiltration des précipitations et de l’eau de surface, ou le stockage durant des décennies d’eau de bonne qualité en quantité significative. Le fonctionnement des écosystèmes terrestres et aquatiques de surface dépend directement des eaux souterraines et vice versa. De nos jours, la règlementation a commence à s’intéresser aux eaux souterraines non seulement en tant que ressource, mais aussi en tant qu’écosystème vivant. L’évaluation des écosystèmes fait appel à des critères écologiques, qui, jusqu’à présent, ne sont pas disponibles pour les systèmes des eaux souterraines. Dans le cadre d’un projet de recherche financé par l’Agence Fédérale Allemande pour l’Environnement (UBA), un premier concept pour une évaluation écologique des écosystèmes d’eau souterraine a été développé. Des étapes à prendre en compte sont introduites, avec un intérêt particulier sur le rôle potentiel des microbes en tant que bio-indicateurs. Elles comprennent (1) la typologie des écosystèmes des eaux souterraines, (2) les valeurs de fond naturel qui en résulte, (3) l’identification de bio-indicateurs potentiels, et (4) le développement d’un modèle d’évaluation. Quelques unes des difficultés posées par ces problèmes, tel que l’absence de corrélation simple entre les variables biotiques et abiotiques, sont discutées sur la base du premier jeu de données provenant d’un aquifère local et régional du NE de l’Allemagne. L’accent est mis sur la nécessité d’une collaboration entre les écologues, les hydrogéologues et les géochimistes ainsi que sur l’utilisation des statistiques multivariées.

Kurzfassung

Ökologisch intakte Grundwasserleiter üben wichtige Ökosystemleistungen aus, z.B. reinigen sie infiltrierendes Wasser und speichern dieses über Jahrzehnte in bester Qualität und in ausreichenden Mengen. Auch die Integrität von terrestrischen Ökosystemen und Oberflächengewässern hängt direkt von Grundwassersystemen ab und vice versa. Mittlerweile haben auch Umweltbehörden und Gesetzgeber erkannt, dass Grundwasser nicht nur eine Ressource, sondern auch Lebensraum ist. Die systemare Beurteilung von Grundwasservorkommen benötigt ökologische Kriterien und biologische Indikatoren, die es bisher in diesem Bereich nicht gibt. Im Rahmen eines Forschungsprojekts, gefördert vom Deutschen Umweltbundesamt (UBA), wurde ein erstes Konzept zur biologischen Beurteilung von Grundwasserökosystemen entwickelt. Es werden die dabei eingeschlagenen Entwicklungsschritte vorgestellt und die Eignung von Mikroorganismen als potentielle Bioindikatoren aufgezeigt. Das Konzept umfasst bisher (1) die Typologisierung von Grundwasserökosystemen, (2) die Ableitung von natürlichen Hintergrundwerten, (3) die Identifizierung von möglichen Bioindikatoren und (4) die Synthese in einem Beurteilungsmodell. Einige der Schwierigkeiten bei dieser Herausforderung, z.B. das Fehlen direkter Zusammenhänge zwischen abiotischen und biotischen Messgrößen, werden auf Basis eines ersten Datensatzes von einem lokalen und regionalen Aquifer im Nordosten Deutschlands diskutiert. Die Notwendigkeit einer interdisziplinären Zusammenarbeit von Ökologen, Hydrogeologen und Geochemikern, als auch der Einsatz moderner Multivariater Statistik wird betont.

Resumen

Primeros intentos hacia un enfoque integrador para la evaluaciónEcológica de ecosistemas en aguas subterráneas. Los acuíferos saludables proveen servicios ecosistémicos importantes, por ejemplo la purificación de aguas de lluvia y de agua superficial infiltradas y el almacenamiento por décadas de cantidades significativas de aguas de muy buena calidad. El funcionamiento de ecosistemas acuáticos superficiales depende directamente de las aguas subterráneas, y viceversa. En la actualidad, la legislación ha comenzado a considerar al agua subterránea no solamente como un recurso sino como un ecosistema vivo. La evaluación de los ecosistemas requiere de la consideración de criterios ecológicos que, al corriente, no se disponen para los sistemas de aguas subterráneas. En el marco de un proyecto de investigación financiado por la Agencia Alemana del Ambiente (UBA), se han desarrollado los primeros conceptos para la evaluación ecológica de los sistemas de aguas subterráneas. Se presentan los pasos a seguir, con un énfasis particular en los microbios como bioindicadores potenciales. Tales pasos incluyen (1) la tipología de los ecosistemas de aguas subterráneas, (2) la derivación de los valores naturales de base, (3) la identificación de bioindicadores potenciales, y (4) el desarrollo de modelos de evaluación. Algunas de las dificultades asociadas con este intento, por ejemplo la ausencia de correlaciones simples entre variables abióticas y bióticas, se discuten sobre la base de los primeros datos locales y regionales de un acuífero en el NE de Alemania. Se enfatiza la necesidad de colaboración entre ecólogos, hidrogeólogos y geoquímicos, así como la aplicación de estadística multivariada.

Resumo

Primeiras tentativas para definir um conceito integrador na avaliação ecológica dos ecossistemas em águas subterrâneas. Os aquíferos salubres desempenham funções importantes nos ecossistemas, i.e. a purificação da água de precipitação e da água superficial que se infiltra e o armazenamento de água de elevada qualidade e em quantidade significativa, durante décadas. O funcionamento dos ecossistemas terrestres e aquáticos depende directamente da água subterrânea e vice-versa. Actualmente, a legislação começou a considerar a água subterrânea não só como um recurso, mas também como um ecossistema vivo. A avaliação dos ecossistemas requer a utilização de critérios ecológicos o que, até agora, não está disponível para sistemas hídricos subterrâneos. No âmbito dum projecto de pesquisa apoiado pela Agência Ambiental da Alemanha Federal (UBA), foi desenvolvido um primeiro conceito para a avaliação ecológica dos ecossistemas em águas subterrâneas. Foram introduzidos passos, a serem considerados, centrados principalmente nos micróbios como bioindicadores potenciais. Estes incluem (1) a tipologia dos ecossistemas em águas subterrâneas, (2) a derivação dos valores de fundo natural, (3) a identificação de potenciais bioindicadores, e (4) o desenvolvimento de um modelo de avaliação. Algumas das dificuldades associadas a estes desafios, i.e., a falta de correlações simples entre variáveis abióticas e bióticas, são discutidas com base no primeiro conjunto de dados de um aquífero local e regional, situado no NE da Alemanha. É enfatizada a necessidade de colaboração entre ecologistas, hidrogeólogos e geoquímicos, assim como a aplicação de estatística multivariada.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Baur WH (1997) Gewässergüte bestimmen und beurteilen [Water quality: assessment and judgement], 3rd edn. 209 pp

  • Bergkamp G, Cross K (2006) Groundwater and ecosystems services: towards their sustainable use. In: International Symposium on Groundwater Sustainability (ISGWAS), Alicante, Spain, January 2006. http://aguas.igme.es/igme/isgwas/ing/defaultc.htm. Cited 12 June 2007

  • Boulton AJ (2005) Chances and challenges in the conservation of groundwaters and their dependent ecosystems. Aquatic Conserv 15:319–323

    Article  Google Scholar 

  • Bright J, Bidwell V, Robb C, Ward J (1998) Environmental performance indicators for groundwater. Technical Paper No. 38, Freshwater, Ministry for the Environment, Wellington, New Zealand

  • Burton GA Jr, Greenberg MS (2000) Assessment approaches and issues in ecological characterizations. Proceedings of the UN-EPA Ground-Water/Surface-Water Interactions Workshop, Washington, DC, August 2000, pp 31–34

  • Cairns Jr J, McCormick PV, Niederlehner BR (1993) A proposed framework for developing indicators of ecosystem health. Hydrobiologia 263:1–44

    Article  Google Scholar 

  • Canivet V, Gibert J (2002) Sensitivity of epigean and hypogean freshwater macroinvertebrates to complex mixtures, part I: laboratory experiments. Chemosphere 46:999–1009

    Article  Google Scholar 

  • Canivet V, Chambom P, Gibert J (2001) Toxicity and bioaccumulation of arsenic and chromium in epigean and hypogean freshwater macroinvertebrates. Arch Environ Contam Toxicol 40:345–354

    Article  Google Scholar 

  • Cho JC, Kim SJ (2000) Increase in bacterial community diversity in subsurface aquifers receiving livestock wastewater input. Appl Environ Microbiol 66:956–965

    Article  Google Scholar 

  • Danielopol DL, Griebler C (2008) Changing paradigms in groundwater ecology: from the ‘living fossils’ tradition to the ‘new groundwater ecology’. Int Rev Hydrobiol (in press)

  • Danielopol DL, Griebler C, Gunatilaka A, Notenboom J (2003) Present state and future prospects for groundwater ecosystems. Environ Conserv 30:104–130

    Article  Google Scholar 

  • Danielopol DL, Gibert J, Griebler C, Gunatilaka A, Hahn HJ, Messana G, Notenboom J, Sket B (2004) Incorporating ecological perspectives in European groundwater management policy. Environ Conserv 31:1–5

    Article  Google Scholar 

  • Danielopol DL, Gibert J, Griebler C (2006a) Efforts of the European commission to improve communication between environmental scientists and policy-makers. ESPR-Environ Sci Pollut Res 13:138–139

    Article  Google Scholar 

  • Danielopol DL, Gunatilaka A, Notemboom J, Griebler C, Gibert J, Sket B, Hahn HJ, Messana G, Lueders T, Griffioen J, Liebich J, Albrechtsen HJ (2006b) Groundwater ecology as necessary link to the EU water framework directive. Proceedings of the European Groundwater Conference, Vienna, Austria, 22–23 June 2006

  • Danielopol D, Griebler C, Gunatilaka A, Hahn HJ, Gibert J, Mermillod-Blondin G, Messana G, Notenboom J, Sket B (2007) Incorporation of groundwater ecology in environmental policy. In: Groundwater science and policy. The Royal Society of Chemistry, London, pp 671–689

    Chapter  Google Scholar 

  • DIN 38402-A 13 (1985) Deutsches Einheitsverfahren zur Wasser-, Abwasser- und Schlammuntersuchung, Algemeine Angaben (A): Probenahme aus Grundwasserleiter [German industry norm for the investigation of water, waste water and sludge: sampling of aquifers], 13.060.10, Deutsches Institut für Normung e.V., Berlin, Germany

  • Extence CA, Ferguson AJD (1989) Aquatic invertebrate surveys as a water quality management tool in the Anglian Water region. Regul Riv 4:139–146

    Article  Google Scholar 

  • EPA (2003) Guidance for the assessment of environmental factors: consideration of subterranean fauna in groundwater and caves during environmental impact assessment in Western Australia. Report No. 54, Environmental Protection Authority, Perth, Australia

  • EU-GWD (2006) Directive 2006/118 of the European Parliament and of the Council of 12 December 2006. Off J Eur Comm L372:1–19

    Google Scholar 

  • EU-WFD (2000) Directive 2000/60/EC of the European Parliament and of the Council of 23 October 2000: establishing framework for community action in the field of water policy. Off J Eur Comm L327:1–71

    Google Scholar 

  • Feld CK, Rödiger S, Sommerhäuser M, Friedrich, G (2005) Typologie, Bewertung, Management von Oberflächengewässer: Stand der Forschung zur Umsetzung der EG-Wasserrahmenrichtline [Classification, assessment and management of surface waters. Current status of research to put the European Water Framework Directive into practice]. Schweizerbart, Stuttgart, Germany, 243 pp

  • Foppen JWA, Schijven JF (2006) Evaluation of data from the literature on the transport and survival of Esherichia coli and thermotolerant coliforms in aquifers under saturated conditions. Wat Res 40:401–426

    Article  Google Scholar 

  • Ghetti PF (1980) Biological indicators of the quality of running waters. Boll Zool 47:381–390

    Google Scholar 

  • Gibert J (ed) (2004) World subterranean biodiversity. Proceedings of an international symposium, Villeurbanne, France, 8–10 December 2004

  • Gibert J, Deharveng L (2002) Subterranean ecosystems: a truncated functional biodiversity. BioSci 52:473–481

    Article  Google Scholar 

  • Goldscheider N, Hunkeler D, Rossi P (2006) Review: Microbial biocenoses in pristine aquifers and an assessment of investigative methods. Hydrogeol J 14:926–941

    Article  Google Scholar 

  • Griebler C, Lueders T (2008) Towards a conceptual understanding of microbial biodiversity in groundwater ecosystems. Freshw Biol (in press). doi:10.1111/j.1365-2427-2008.02013.x

  • Griebler C, Mindl B, Slezak D (2001) Combining DAPI and SYBR Green II for the enumeration of total bacterial numbers in aquatic sediments. Int Rev Hydrobiol 86:453–465

    Article  Google Scholar 

  • Griebler C, Lueders T, Liebich J (2006) Development of an Aquifer DNA microarray for the biological assessment of groundwater ecosystems. European Groundwater Conference, Vienna, 22–23 June 2006, pp 130–131

  • GSchV (1998) Gewässerschutzverordnung (Swiss Water Ordinance) 814.201, Der Schweizer Bundesrat, Bern, Switzerland

  • Hahn HJ (2006) The GW-Fauna-Index: a first approach to a quantitative ecological assessment of groundwater habitats. Limnologica 36:119–137

    Google Scholar 

  • Hancock PJ (2002) Human impacts on the stream-groundwater exchange zone. Environ Manage 29:763–781

    Article  Google Scholar 

  • Hancock PJ, Boulton AJ, Humphreys WF (2005) Aquifers and hyprheic zones: towards an ecological understanding of groundwater. Hydrogeol J 13(5):98–111

    Article  Google Scholar 

  • Heath RC (1982) Classification of ground-water systems of the United States. Ground Water 20:393–401

    Article  Google Scholar 

  • Herman JS, Culver DC, Salzmann J (2001) Groundwater ecosystems and the service of water purification. Stanford Environ Law J 20:479–495

    Google Scholar 

  • Hose GC (2005) Assessing the need for groundwater quality guidelines for pesticides using the species sensitivity distribution approach. Human Ecol Risk Assess 11(5):951–966

    Article  Google Scholar 

  • Hose GC, Murray BR, Eamus D (2004) Water quality guidelines to protect groundwater-dependent ecosystems. Ecol Manag Restor 5(1):78–80

    Article  Google Scholar 

  • Humphreys WF (2006) Aquifers: the ultimate groundwater-dependent ecosystems. Aust J Bot 54:115–132

    Article  Google Scholar 

  • Hunkeler D, Goldscheider N, Rossi P, Burn C (2006) Biozönosen im Grundwasser: Grundlagen und Methoden der Charakterisierung von mikrobiellen Gemeinschaften [Biocenoses in groundwater: fundamentals and methods for the characterization of microbial communities]. Umwelt-Wissen no. 0603, Bundesamt für Umwelt, Bern, Switzerland

  • Kunkel R, Wendland F, Voigt HJ, Hannappel S (2004) Die natürliche, ubiquitär überprägte Grundwasserbeschaffenheit in Deutschland [The natural, ubiquitary determined composition of groundwaters], Band/vol 47. Schriften des Forschungszentrums Jülich, Reihe Umwelt/Environment, Jülich, Germamy

  • Lafont M, Camus JC, Fournier A Sourp E (2001) A practical concept for the ecological assessment of aquatic ecosystems: application on the River Dore in France. Aquat Ecol 35:195–205

    Article  Google Scholar 

  • Malard F, Plénet S, Gibert J (2006) The use of invertebrates in groundwater monitoring: a rising research field. Ground Water Monit Rem 16(2):103–113

    Article  Google Scholar 

  • Matzke D, Hahn HJ, Ramstöck A, Rother K (2005) Bewertung von Altlasten im Grundwasser anhand der Meiofaunagemeinschaften: erste Ergebnisse [Assessment of waste deposits in groundwater based on meio fauna communities: first results]. Grundwasser 1:25–34

    Article  Google Scholar 

  • Mauch D (1976) Leitformen der Saprobität für die biologische Gewässeranalyse [Key elements of the saprobity for the biological assessment of waters]. Courier Forschungsinstitut Seckenberg 21, Frankfurt am Main, Germany, Issues 1–5

  • Mösslacher F (1998) Subsurface dwelling Crustaceans as indicators of hydrological conditions, oxygen concentrations, and sediment structure in an alluvial aquifer. Int Rev Hydrobiol 83:349–364

    Article  Google Scholar 

  • Mösslacher F (2000a) Advantages and disadvantages of groundwater organisms for biomonitoring. Verh Int Ver Limnol 27:2725–2728

    Google Scholar 

  • Mösslacher F (2000b) Sensitivity of groundwater and surface water crustaceans to chemical pollutants and hypoxia: implications for pollution management. Arch Hydrobiol.149:51–66

    Google Scholar 

  • Mösslacher F, Griebler C, Notenboom, J (2001) Biomonitoring of groundwater systems: methods, applications and possible indicators among the groundwater biota. In: Griebler C, Danielopol DL, Gibert J, Nachtnebel HP, Notenboom J (eds) Groundwater ecology: a tool for management of water resources. Official Publication of the European Communities, Brussels, pp 173–182

  • Mösslacher F, Notenboom, J (1999) Groundwater Biomonitoring. In: Gerhardt A (ed) Biomonitoring of polluted water, Environ Sci Forum 96:119–140

  • Müller D, Blum A, Hart A, Hookey J, Kunkel R, Scheidleder A, Tomlin C, Wendland F (2006) Final proposal for a methodology to set up groundwater threshold values in Europe. Specific targeted EU, research project BRIDGE, report D 18, European Commission, Brussels

  • Murphy J, Riley JP (1962) A modified single solution method for the determination of phosphate in natural waters. Anal Chim Acta 27:31–36

    Article  Google Scholar 

  • Murray BR, Zeppel MJB, Hose GC, Eamus D (2003) Groundwater-dependent ecosystems in Australia: it’s more than just water for rivers. Ecol Manage Restor 4(2):110–113

    Article  Google Scholar 

  • Murray B, Hose GC, Eamus D, Licari D (2006) The valuation of groundwater-dependent ecosystems: a functional methodology incorporating ecosystem services. Aust J Bot 54:221–229

    Article  Google Scholar 

  • Paerl HW, Dyble J, Moisander PH, Noble RT, Piehler MF, Pinckney JL, Steppe TF, Twomey L, Valdes LM (2003) Microbial indicators of aquatic ecosystem change: current applications to eutrophication studies. FEMS Microbiol Ecol 46:233–246

    Article  Google Scholar 

  • R Development Core Team (2007) R: a language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. http://www.R-project.org. Cited 20 April 2008

  • Rentier C, Delloye F, Brouyére S, Dassargues A (2006) A framework for an optimised groundwater monitoring network and aggregated indicators. Environ Geol 50:194–201

    Article  Google Scholar 

  • Sampat P (2000) Deep trouble: the hidden threat of groundwater pollution. World Watch Paper No. 154, World Watch, Washington, DC, 55 pp

  • Schmidt M, Priemé A, Stougaard, P (2006) Bacterial diversity in permanently cold and alkaline ikaite columns from Greenland. Extremophiles 10(6):551–562. doi:10.1007/s00792–006–0529–9

    Google Scholar 

  • Schmidt SI, Hahn HJ, Hatton T, Humphreys WF (2007) Do faunal assemblages reflect the exchange intensity in groundwater zones? Hydrobiologia 583:1–19

    Article  Google Scholar 

  • Solé M, Fetzer I, Wennrich R, Sridhar KR, Harms H, Krauss G (2008) Aquatic hyphomycete communities as potential bioindicators for assessing anthropogenic stress. Sci Total Environ 389:557–565

    Article  Google Scholar 

  • Tomlinson M, Boulton AJ, Hancock PJ, Cook PG (2007) Deliberate omission or unfortunate oversight: Should stygofaunal surveys be included in routine groundwater monitoring programs? Hydrogeol J 15(7):1317–1320

    Article  Google Scholar 

  • UBA (2007) German Federal Environmental Agency, Biologisch Bewertung von Grundwasserökosystemen“(Biological assessment of groundwater ecosystems), UBA (Umweltbundesamt)-project, funded for the period 2007–2009, UBA, Dessau, Germany

  • Van den Brink C, Frapporti G, Griffioen J, Zaadnoordijk WJ (2007) Statistical analysis of anthropogenic versus geochemical-controlled differences in groundwater composition in The Netherlands. J Hydrol 336:470–480

    Article  Google Scholar 

  • Wendland F, Blum A, Coetsiers M, Gorova R, Griffioen J, Grima J, Hinsby K. Kunkel R, Marandi A, Melo T, Panagopoulos A, Pauwels H, Ruisi M, Traversa P, Vermooten JSA, Walraevens K (2007) European aquifer typology: a practical framework for an overview of major groundwater composition at European scale. Environ Geol. doi:10.1007/s00254–007–0966–5

  • Winderl C, Schäfer S, Lueders T (2007) Detection of anaerobic toluene degraders in contaminated aquifers using benzylsuccinate synthase (bssA) genes as a specific functional marker. Environ Microbiol 9:1035–1046

    Article  Google Scholar 

Download references

Acknowledgements

The authors gratefully acknowledge the financial support by the German Federal Environment Agency (UBA-project ‘Biologische Bewertung von Grundwasserökosystemen’) and the logistical help from N. Cremer and Mr. Lack of the ‘Erftverband’ in Bergheim, Germany, who also provided selected chemical analysis. J. Kirchmeyer from the UBA (Fachgebiet I 1 5 Umweltinformationssysteme und –dienste) assisted with the graphical design. We further thank our colleagues K.-P. Barufke and B. Schneider at the LUBW (Landesanstalt für Umwelt, Messungen, Naturschutz Baden-Württemberg), our colleagues A. Fuchs, H.J. Hahn, and H. Stein from the University of Koblenz-Landau as well as T. Lueders, A. Mösch, and M. Stöckl from the Institute of Groundwater Ecology at the HMGU in Neuherberg, Germany, for sampling assistance, help with analysis and critical comments on the manuscript. The Helmholtz Zentrum Muenchen (HMGU) is acknowledged for support and providing ideal working conditions. The authors also thank Hydrogeology Journal’s Guest Editor A. Boulton and reviewer B. Murray, and an anonymous reviewer, for substantial comments which improved the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Christian Griebler.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Steube, C., Richter, S. & Griebler, C. First attempts towards an integrative concept for the ecological assessment of groundwater ecosystems. Hydrogeol J 17, 23–35 (2009). https://doi.org/10.1007/s10040-008-0346-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10040-008-0346-6

Keywords

Navigation