Skip to main content
Log in

Numerical estimation of the permeability of granular soils using the DEM and LBM or FFT-based fluid computation method

  • Original Report
  • Published:
Granular Matter Aims and scope Submit manuscript

Abstract

Numerical packings of spheres with uniform grain size distribution and maximum to minimum diameter ratio up to 15 are generated using the Discrete Element Method (DEM). Two numerical methods are used to compute their permeability by homogenization: the Lattice Boltzmann Method (LBM) and a Fast Fourier Transform (FFT) based method. The results given by both methods are shown to be consistent with semi-analytical and experimental results. For an identical discretization grid, the FFT method has the lowest memory and computational time requirements. The LBM is more accurate for coarse to moderately fine discretizations, while the FFT method converges linearly with the voxel size h with a relative discretization error below 1.5 times \(h/D_{25}\), where \(D_{25}\) is the 25% passing by mass grain diameter. The issue of the variability of the permeability computed on finite sized samples is determined either directly by many realizations of similar random samples or indirectly by a faster filtering method on a single sample. Both methods yield similar results and indicate that a Representative Volume Element (RVE) size greater than 7\(D_{40}\) guarantees a variability of permeability below 5%.

Graphic abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18

Similar content being viewed by others

Notes

  1. \(\mu = \rho \nu\) where \(\rho\) is the fluid density and \(\nu\) its kinematic viscosity.

  2. In this section, as opposed to Sect. 2, the microscale denotes the molecular scale, the macroscale denotes the scale at which the fluid is homogeneous (which is the microscale of Sect. 2) and the mesoscale denotes the scale of a collection of molecules.

  3. The bold letter \({\varvec{f}}\) denotes a body force in this section, and must not be confused with the letter f which denotes the distribution function in the LBM method.

References

  1. Abdallah, B., Willot, F., Jeulin, D.: Stokes flow through a boolean model of spheres: representative volume element. Transp. Porous Media 109(3), 711–726 (2015)

    Article  MathSciNet  Google Scholar 

  2. Auriault, J.L., Geindreau, C., Boutin, C.: Filtration law in porous media with poor separation of scales. Transp. Porous Media 60(1), 89–108 (2005)

    Article  MathSciNet  Google Scholar 

  3. Auriault, J.L., Sanchez-Palencia, E.: Etude du comportement macroscopique d’un milieu poreux saturé déformable. J. de Mécanique 16, 575–603 (1977)

    MathSciNet  MATH  Google Scholar 

  4. Beavers, G.S., Sparrow, E., Rodenz, D.: Influence of bed size on the flow characteristics and porosity of randomly packed beds of spheres. J. Appl. Mech. 40(3), 655–660 (1973)

    Article  ADS  Google Scholar 

  5. Bhathnagor, P., Gross, E., Krook, M.: A model for collision processes in gases. Phys. Rev. 94(3), 511 (1954)

    MATH  ADS  Google Scholar 

  6. Bignonnet, F.: Upper bounds on the permeability of random porous media. Transp. Porous Media 122(1), 57–76 (2018)

    Article  MathSciNet  Google Scholar 

  7. Bignonnet, F.: Efficient FFT-based upscaling of the permeability of porous media discretized on uniform grids with estimation of RVE size. Comput. Methods Appl. Mech. Eng. 369, 113237 (2020)

    Article  MathSciNet  MATH  ADS  Google Scholar 

  8. Bignonnet, F.: Micromechanical schemes for Stokes to Darcy homogenization of permeability based on generalized Brinkman inhomogeneity problems. Int. J. Eng. Sci. 172, 103622 (2022)

    Article  MathSciNet  MATH  Google Scholar 

  9. Bignonnet, F., Dormieux, L.: FFT-based bounds on the permeability of complex microstructures. Int. J. Numer. Anal. Meth. Geomech. 38(16), 1707–1723 (2014)

    Article  Google Scholar 

  10. Bouzidi, M., Firdaouss, M., Lallemand, P.: Momentum transfer of a Boltzmann-lattice fluid with boundaries. Phys. Fluids 13(11), 3452–3459 (2001)

    Article  MATH  ADS  Google Scholar 

  11. Cailletaud, G., Jeulin, D., Rolland, P.: Size effect on elastic properties of random composites. Eng. Comput. 11, 99–110 (1994)

    Article  Google Scholar 

  12. Carman, P.C.: Fluid flow through granular beds. Chem. Eng. Res. Des. 75, S32–S48 (1997)

    Article  Google Scholar 

  13. Coelho, D., Thovert, J.F., Adler, P.M.: Geometrical and transport properties of random packings of spheres and aspherical particles. Phys. Rev. E 55, 1959–1978 (1997)

    Article  ADS  Google Scholar 

  14. Du, X., Ostoja-Starzewski, M.: On the size of representative volume element for Darcy law in random media. Proc. Royal Soc. A 462, 2949–2963 (2006)

    Article  MathSciNet  MATH  ADS  Google Scholar 

  15. Eichheimer, P., Thielmann, M., Fujita, W., Golabek, G.J., Nakamura, M., Okumura, S., Nakatani, T., Kottwitz, M.O.: Combined numerical and experimental study of microstructure and permeability in porous granular media. Solid Earth 11(3), 1079–1095 (2020)

    Article  ADS  Google Scholar 

  16. Ene, H., Sanchez-Palencia, E.: Equations et phénomènes de surface pour l’écoulement dans un modèle de milieu poreux. J. de Mécanique pp. 73–108 (1975)

  17. Fry, J.: Lessons on internal erosion in embankment dams from failures and physical models. In: Proceeding of 8th International Conference on Scour and Erosion (ICSE8), pp. 41–58 (2016)

  18. Gueven, I., Frijters, S., Harting, J., Luding, S., Steeb, H.: Hydraulic properties of porous sintered glass bead systems. Granul. Matter. 19(2), 1–21 (2017)

    Article  Google Scholar 

  19. Guo, Z., Zheng, C., Shi, B.: Discrete lattice effects on the forcing term in the lattice Boltzmann method. Phys. Rev. E 65(4), 046308 (2002)

    Article  MATH  ADS  Google Scholar 

  20. He, X., Luo, L.S.: Lattice Boltzmann model for the incompressible Navier-Stokes equation. J. Stat. Phys. 88(3), 927–944 (1997)

    Article  MathSciNet  MATH  ADS  Google Scholar 

  21. He, X., Luo, L.S.: Theory of the lattice Boltzmann method: From the Boltzmann equation to the lattice Boltzmann equation. Phys. Rev. E 56(6), 6811 (1997)

    Article  ADS  Google Scholar 

  22. He, X., Zou, Q., Luo, L.S., Dembo, M.: Analytic solutions of simple flows and analysis of nonslip boundary conditions for the lattice Boltzmann BGK model. J. Stat. Phys. 87(1), 115–136 (1997)

    Article  MathSciNet  MATH  ADS  Google Scholar 

  23. Indraratna, B., Nguyen, V.T., Rujikiatkamjorn, C.: Hydraulic conductivity of saturated granular soils determined using a constriction-based technique. Can. Geotech. J. 49(5), 607–613 (2012)

    Article  Google Scholar 

  24. Kanit, T., Forest, S., Galliet, I., Mounoury, V., Jeulin, D.: Determination of the size of the representative volume element for random composites: statistical and numerical approach. Int. J. Solids Struct. 40(13–14), 3647–3679 (2003)

    Article  MATH  Google Scholar 

  25. Kenney, T., Chahal, R., Chiu, E., Ofoegbu, G., Omange, G., Ume, C.: Controlling constriction sizes of granular filters. Can. Geotech. J. 22(1), 32–43 (1985)

    Article  Google Scholar 

  26. Knight, C., O’Sullivan, C., van Wachem, B., Dini, D.: Computing drag and interactions between fluid and polydisperse particles in saturated granular materials. Comput. Geotech. 117, 103210 (2020)

    Article  Google Scholar 

  27. Koltermann, C.E., Gorelick, S.M.: Fractional packing model for hydraulic conductivity derived from sediment mixtures. Water Resour. Res. 31(12), 3283–3297 (1995)

    Article  ADS  Google Scholar 

  28. Kuhn, M.R., Sun, W., Wang, Q.: Stress-induced anisotropy in granular materials: fabric, stiffness, and permeability. Acta Geotech. 10(4), 399–419 (2015)

    Article  Google Scholar 

  29. Latt, J., Malaspinas, O., Kontaxakis, D., Parmigiani, A., Lagrava, D., Brogi, F., Belgacem, M.B., Thorimbert, Y., Leclaire, S., Li, S., et al.: Palabos: parallel lattice Boltzmann solver. Comput. Math. Appl. 81, 334–350 (2021)

    Article  MathSciNet  MATH  Google Scholar 

  30. Matheron, G.: The Theory of Regionalized Variables and its Applications. Ecole Nationale Supérieure des Mines, Paris (1971)

    Google Scholar 

  31. Mittal, R., Iaccarino, G.: Immersed boundary methods. Annu. Rev. Fluid Mech. 37(1), 239–261 (2005)

    Article  MathSciNet  MATH  ADS  Google Scholar 

  32. Monchiet, V., Bonnet, G., Lauriat, G.: A FFT-based method to compute the permeability induced by a Stokes slip flow through a porous medium. Comptes Rendus de Mécanique 337, 192–197 (2009)

    Article  MATH  ADS  Google Scholar 

  33. Mourzenko, V., Thovert, J.F., Vizika, O., Adler, P.M.: Geometrical and transport properties of random packings of polydisperse spheres. Phys. Rev. E 77, 066306 (2008)

    Article  ADS  Google Scholar 

  34. Nguyen, N.S., Taha, H., Marot, D.: A new Delaunay triangulation-based approach to characterize the pore network in granular materials. Acta Geotechnica pp. 1–19 (2021)

  35. Odong, J.: Evaluation of empirical formulae for determination of hydraulic conductivity based on grain-size analysis. J. Am. Sci. 3(3), 54–60 (2007)

    Google Scholar 

  36. O’Sullivan, C.: Particulate discrete element modelling: a geomechanics perspective. CRC Press (2011)

  37. Sangani, A., Acrivos, A.: Slow flow past periodic arrays of cylinders with application to heat transfer. Int. J. Multiph. Flow. 8(3), 193–206 (1982)

    Article  MATH  Google Scholar 

  38. Sanvitale, N., Zhao, B., Bowman, E., O’Sullivan, C.: Particle-scale observation of seepage flow in granular soils using PIV and CFD. Géotechnique pp. 1–18 (2021)

  39. Sheikh, B., Pak, A.: Numerical investigation of the effects of porosity and tortuosity on soil permeability using coupled three-dimensional discrete-element method and lattice Boltzmann method. Phys. Rev. E 91(5), 053301 (2015)

    Article  ADS  Google Scholar 

  40. Šmilauer, V., et al.: Yade Documentation 2nd ed. The Yade Project (2015). https://doi.org/10.5281/zenodo.34073. http://yade-dem.org/doc/

  41. Taha, H., Nguyen, N.S., Marot, D., Hijazi, A., Abou-Saleh, K.: Micro-scale investigation of the role of finer grains in the behavior of bidisperse granular materials. Granul. Matter. 21(2), 28 (2019)

    Article  Google Scholar 

  42. Tran, D.K., Prime, N., Froiio, F., Callari, C., Vincens, E.: Numerical modelling of backward front propagation in piping erosion by DEM-LBM coupling. Eur. J. Environ. Civ. Eng. 21(7–8), 960–987 (2017)

    Article  Google Scholar 

  43. Verneuil, E., Durian, D.J.: Permeability of mixed soft and hard granular material: hydrogels as drainage modifiers. Eur. Phys. J. E 34(7), 1–7 (2011)

    Article  Google Scholar 

  44. Vincens, E., Witt, K.J., Homberg, U.: Approaches to determine the constriction size distribution for understanding filtration phenomena in granular materials. Acta Geotech. 10(3), 291–303 (2015)

    Article  Google Scholar 

  45. Zick, A., Homsy, G.: Stokes flow through periodic arrays of spheres. J. Fluid Mech. 115, 13–26 (1982)

    Article  MATH  ADS  Google Scholar 

Download references

Acknowledgements

This work was partly funded by the French National Research Agency under grant ANR-21-CE22-0005-01.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ngoc Son Nguyen.

Ethics declarations

Conflict of interest

The authors have no competing interests to declare that are relevant to the content of this article.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Nguyen, N.S., Bignonnet, F. Numerical estimation of the permeability of granular soils using the DEM and LBM or FFT-based fluid computation method. Granular Matter 25, 53 (2023). https://doi.org/10.1007/s10035-023-01330-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10035-023-01330-1

Keywords

Navigation