Skip to main content
Log in

Dynamic characteristics of sphere impact into wet granular materials considering suction

  • Original Paper
  • Published:
Granular Matter Aims and scope Submit manuscript

Abstract

Understanding the impact and penetration characteristics of non-homogeneous granular material systems is of great significance for various research work. In this study, a series of experiments are conducted to investigate the impact and penetration processes of sand and glass beads, two granular materials with different moisture contents. The ultra-high-speed camera is used to capture the dynamic response of the projectile, while the impact force during impact and penetration is recorded by miniature load cells arranged underneath the container. The results show that the dynamic response of the projectile differs significantly for different types of granular materials with different moisture contents. The comparison between wet and dry granular materials reveals that the terminal penetration depth and the duration of the collision are much less for wet granular materials than for dry ones, and the effect of moisture content on the terminal penetration depth of the projectile is discussed. Assuming that the presence of moisture has no effect on the inertial force term, a modified motion equation is proposed taking into account the suction of wet granular materials.

Graphic abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19

Similar content being viewed by others

References

  1. Ji, S., Liang, S.: DEM-FEM-MBD coupling analysis of landing process of lunar lander considering landing mode and buffering mechanism. Adv. Space Res. 68, 1627–1643 (2021). https://doi.org/10.1016/j.asr.2021.03.034

    Article  ADS  Google Scholar 

  2. Remington, T.P., Owen, J.M., Nakamura, A.M., Miller, P.L., Bruck Syal, M.: Numerical simulations of laboratory-scale, hypervelocity-impact experiments for asteroid-deflection code validation. Earth Space Sci. (2020). https://doi.org/10.1029/2018EA000474

    Article  Google Scholar 

  3. Raie, M.S., Tassoulas, J.L.: Installation of torpedo anchors: numerical modeling. J. Geotech. Geoenviron. Eng. 135, 1805–1813 (2009). https://doi.org/10.1061/(ASCE)GT.1943-5606.0000159

    Article  Google Scholar 

  4. Zhang, Q., Gao, M., Zhao, R., Cheng, X.: Scaling of liquid-drop impact craters in wet granular media. Phys. Rev. E 92, 042205 (2015). https://doi.org/10.1103/PhysRevE.92.042205

    Article  ADS  Google Scholar 

  5. Marston, J.O., Li, E.Q., Thoroddsen, S.T.: Evolution of fluid-like granular ejecta generated by sphere impact. J. Fluid Mech. 704, 5–36 (2012). https://doi.org/10.1017/jfm.2012.141

    Article  ADS  MATH  Google Scholar 

  6. Omidvar, M., Iskander, M., Bless, S.: Response of granular media to rapid penetration. Int. J. Impact Eng. 66, 60–82 (2014). https://doi.org/10.1016/j.ijimpeng.2013.12.004

    Article  Google Scholar 

  7. Brzinski, T.A., Mayor, P., Durian, D.J.: Depth-dependent resistance of granular media to vertical penetration. Phys. Rev. Lett. 111, 168002 (2013). https://doi.org/10.1103/PhysRevLett.111.168002

    Article  ADS  Google Scholar 

  8. Goldman, D.I., Umbanhowar, P.: Scaling and dynamics of sphere and disk impact into granular media. Phys. Rev. E 77, 021308 (2008). https://doi.org/10.1103/PhysRevE.77.021308

    Article  ADS  MathSciNet  Google Scholar 

  9. Marston, J.O., Vakarelski, I.U., Thoroddsen, S.T.: Sphere impact and penetration into wet sand. Phys. Rev. E 86, 020301 (2012). https://doi.org/10.1103/PhysRevE.86.020301

    Article  ADS  Google Scholar 

  10. Pica Ciamarra, M., Lara, A.H., Lee, A.T., Goldman, D.I., Vishik, I., Swinney, H.L.: Dynamics of drag and force distributions for projectile impact in a granular medium. Phys. Rev. Lett. 92, 194301 (2004). https://doi.org/10.1103/PhysRevLett.92.194301

    Article  ADS  Google Scholar 

  11. Ambroso, M.A., Santore, C.R., Abate, A.R., Durian, D.J.: Penetration depth for shallow impact cratering. Phys. Rev. E 71, 051305 (2005). https://doi.org/10.1103/PhysRevE.71.051305

    Article  ADS  Google Scholar 

  12. Collins, A.L., Addiss, J.W., Walley, S.M., Promratana, K., Bobaru, F., Proud, W.G., Williamson, D.M.: The effect of rod nose shape on the internal flow fields during the ballistic penetration of sand. Int. J. Impact Eng. 38, 951–963 (2011). https://doi.org/10.1016/j.ijimpeng.2011.08.002

    Article  Google Scholar 

  13. Vo, T.-T., Nguyen, T.-K.: Unified penetration depth of low-velocity intruders into granular packings. Phys. Rev. E 106, 014902 (2022). https://doi.org/10.1103/PhysRevE.106.014902

    Article  ADS  Google Scholar 

  14. Zhao, H., Zhang, D., Liu, C., Deng, A., Ji, S.: Experimental investigation of rapid penetration of cylindrical rods into granular materials. Granul. Matter 24, 22 (2022). https://doi.org/10.1007/s10035-021-01181-8

    Article  Google Scholar 

  15. Huang, K., Hernández-Delfin, D., Rech, F., Dichtl, V., Hidalgo, R.C.: The role of initial speed in projectile impacts into light granular media. Sci. Rep. 10, 3207 (2020). https://doi.org/10.1038/s41598-020-59950-z

    Article  ADS  Google Scholar 

  16. Birch, S.P.D., Manga, M., Delbridge, B., Chamberlain, M.: Penetration of spherical projectiles into wet granular media. Phys. Rev. E 90, 032208 (2014). https://doi.org/10.1103/PhysRevE.90.032208

    Article  ADS  Google Scholar 

  17. Richart, F.E., Hall, J.R., Woods, R.D.: Vibrations of soils and foundations. Prentic-Hall, Inc., Englewood Cliffs, New Jersey (1970)

  18. Li, Y., Dove, A., Curtis, J.S., Colwell, J.E.: 3D DEM simulations and experiments exploring low-velocity projectile impacts into a granular bed. Powder Technol. 288, 303–314 (2016). https://doi.org/10.1016/j.powtec.2015.11.022

    Article  Google Scholar 

  19. Fang, Y., Guo, L., Hou, M.: Arching effect analysis of granular media based on force chain visualization. Powder Technol. 363, 621–628 (2020). https://doi.org/10.1016/j.powtec.2020.01.038

    Article  Google Scholar 

  20. Euler, L.: Neue Grundsatze der Artillerie. Berlin; reprinted as Euler’s Opera Omnia. Omnia, 1st ed. Druck und Verlag Von B. G. Teubner, Berlin, p. 484 (1922)

  21. Poncelet, J.V.: Introduction à la mécanique industrielle, physique ou expérimentale. 3rd ed. Gauthier-Villars, Paris (1839)

  22. Resal, H.: Sur la penetration d’un projectile dans les semi-fluides et les solides (1895)

  23. Petry, L.: Monographies de systemes d’artillerie. Presented at the Brussels, Belgium (1910)

  24. Uehara, J.S., Ambroso, M.A., Ojha, R.P., Durian, D.J.: Low-speed impact craters in loose granular media. Phys. Rev. Lett. 90, 194301 (2003). https://doi.org/10.1103/PhysRevLett.90.194301

    Article  ADS  Google Scholar 

  25. Newhall, K.A., Durian, D.J.: Projectile-shape dependence of impact craters in loose granular media. Phys. Rev. E 68, 060301 (2003). https://doi.org/10.1103/PhysRevE.68.060301

    Article  ADS  Google Scholar 

  26. Lohse, D., Rauhé, R., Bergmann, R., van der Meer, D.: Creating a dry variety of quicksand. Nature 432, 689–690 (2004). https://doi.org/10.1038/432689a

    Article  ADS  Google Scholar 

  27. Tsimring, L.S., Volfson, D.: Modeling of impact cratering in granular media. Powders Grains, 1215–1221 (2005)

  28. de Bruyn, J.R., Walsh, A.M.: Penetration of spheres into loose granular media. Can J Phys 82, 8 (2004)

    Article  Google Scholar 

  29. Umbanhowar, P., Goldman, D.I.: Granular impact and the critical packing state. Phys. Rev. E 82, 010301 (2010). https://doi.org/10.1103/PhysRevE.82.010301

    Article  ADS  Google Scholar 

  30. Royer, J.R., Conyers, B., Corwin, E.I., Eng, P.J., Jaeger, H.M.: The role of interstitial gas in determining the impact response of granular beds. EPL 93, 28008 (2011). https://doi.org/10.1209/0295-5075/93/28008

    Article  ADS  Google Scholar 

  31. Xu, J., Zou, R., Yu, A.: Packing structure of cohesive spheres. Phys. Rev. E 69, 032301 (2004). https://doi.org/10.1103/PhysRevE.69.032301

    Article  ADS  Google Scholar 

  32. Newitt, D.M., Conway, J.M.: A contribution to the theory and practice of granulation. Trans. Inst. Chem. Eng. 36, 422–442 (1958)

    Google Scholar 

  33. Iveson, S.M., Litster, J.D., Hapgood, K., Ennis, B.J.: Nucleation, growth and breakage phenomena in agitated wet granulation processes: a review. Powder Technol. 117, 3–39 (2001). https://doi.org/10.1016/S0032-5910(01)00313-8

    Article  Google Scholar 

  34. Mitarai, N., Nori, F.: Wet granular materials. Adv. Phys. 55, 1–45 (2006). https://doi.org/10.1080/00018730600626065

    Article  ADS  Google Scholar 

  35. Bragov, A.M., Balandin, V.V., Igumnov, L.A., Кotov, V.L., Kruszka, L., Lomunov, A.K.: Impact and penetration of cylindrical bodies into dry and water-saturated sand. Int. J. Impact Eng. 122, 197–208 (2018). https://doi.org/10.1016/j.ijimpeng.2018.08.012

    Article  Google Scholar 

  36. Balandin, V.V., Balandin, Vl.Vl., Bragov, A.M., Krylov, S.V., Tsvetkova, E.V.: Experimental and theoretical study of penetration of spherical solids into wet sand. J. Appl. Mech. Tech. Phys. 56, 972–976 (2015). https://doi.org/10.1134/S0021894415060061

    Article  ADS  Google Scholar 

  37. Seguin, A., Bertho, Y., Gondret, P.: Influence of confinement on granular penetration by impact. Phys. Rev. E 78, 010301 (2008). https://doi.org/10.1103/PhysRevE.78.010301

    Article  ADS  Google Scholar 

  38. Artoni, R., Loro, G., Richard, P., Gabrieli, F., Santomaso, A.C.: Drag in wet granular materials. Powder Technol. 356, 231–239 (2019). https://doi.org/10.1016/j.powtec.2019.08.016

    Article  Google Scholar 

  39. Liao, C.-C., Huang, Y.-Y.: Experimental investigate the effect of liquid distribution state on size segregation of wet granular materials in rotating drums. Powder Technol. 381, 561–566 (2021). https://doi.org/10.1016/j.powtec.2020.12.032

    Article  Google Scholar 

  40. Hou, M., Peng, Z., Liu, R., Wu, Y., Tian, Y., Lu, K., Chan, C.K.: Projectile impact and penetration in loose granular bed. Sci. Technol. Adv. Mater. 6, 855–859 (2005). https://doi.org/10.1016/j.stam.2005.05.016

    Article  Google Scholar 

  41. Chen, T., Zhang, G., Zhang, C., Gao, X., Zheng, Y.: Normal impact test of a spherical rockfall. Geotech. Geol. Eng. 37, 4889–4899 (2019). https://doi.org/10.1007/s10706-019-00949-3

    Article  Google Scholar 

  42. Omidvar, M., Malioche, J.D., Bless, S., Iskander, M.: Phenomenology of rapid projectile penetration into granular soils. Int. J. Impact Eng. 85, 146–160 (2015). https://doi.org/10.1016/j.ijimpeng.2015.06.002

    Article  Google Scholar 

  43. Takita, H., Sumita, I.: Low-velocity impact cratering experiments in a wet sand target. Phys. Rev. E 88, 022203 (2013). https://doi.org/10.1103/PhysRevE.88.022203

    Article  Google Scholar 

  44. Lu, N., William, J.L.: Unsaturated soil mechanics. In: Unsaturated Soil Mechanics. Higher Education Press (2012)

  45. Arya, L.M., Paris, J.F.: A physicoempirical model to predict the soil moisture characteristic from particle-size distribution and bulk density data. Soil Sci. Soc. Am. J. 45, 1023–1030 (1981). https://doi.org/10.2136/sssaj1981.03615995004500060004x

    Article  ADS  Google Scholar 

  46. Gens, A.: Soil–environment interactions in geotechnical engineering. Géotechnique 60, 3–74 (2010). https://doi.org/10.1680/geot.9.P.109

    Article  Google Scholar 

  47. Xia, Y., Sheffield, J., Ek, M.B., Dong, J., Chaney, N., Wei, H., Meng, J., Wood, E.F.: Evaluation of multi-model simulated soil moisture in NLDAS-2. J. Hydrol. 512, 107–125 (2014). https://doi.org/10.1016/j.jhydrol.2014.02.027

    Article  ADS  Google Scholar 

  48. Miller, D.A., White, R.A.: A Conterminous United States Multilayer Soil Characteristics Dataset for Regional Climate and Hydrology Modeling, p. 26

  49. van Genuchten, MTh.: A closed-form equation for predicting the hydraulic conductivity of unsaturated soils. Soil Sci. Soc. Am. J. 44, 892–898 (1980). https://doi.org/10.2136/sssaj1980.03615995004400050002x

    Article  Google Scholar 

  50. Fredlund, D.G., Xing, A.: Equations for the soil–water characteristic curve. Can. Geotech. J. 31, 521–532 (1994)

    Article  Google Scholar 

  51. Liao, C.-C., Hsiau, S.-S.: Experimental analysis of dynamic properties in wet sheared granular matter. Powder Technol. 197, 222–229 (2010). https://doi.org/10.1016/j.powtec.2009.09.017

    Article  Google Scholar 

  52. Yang, W.-L., Hsiau, S.-S.: Wet granular materials in sheared flows. Chem. Eng. Sci. 60, 4265–4274 (2005). https://doi.org/10.1016/j.ces.2005.03.001

    Article  Google Scholar 

  53. Kasper, J.H., Magnanimo, V., de Jong, S.D.M., Beek, A., Jarray, A.: Effect of viscosity on the avalanche dynamics and flow transition of wet granular matter. Particuology 59, 64–75 (2021). https://doi.org/10.1016/j.partic.2020.12.001

    Article  Google Scholar 

  54. Clark, A.H., Behringer, R.P.: Granular impact model as an energy-depth relation. EPL 101, 64001 (2013). https://doi.org/10.1209/0295-5075/101/64001

    Article  ADS  Google Scholar 

  55. Katsuragi, H., Durian, D.J.: Drag force scaling for penetration into granular media Phys. Rev. E 87, 052208 (2013). https://doi.org/10.1103/PhysRevE.87.052208

    Article  Google Scholar 

  56. Pacheco-Vázquez, F., Caballero-Robledo, G.A., Solano-Altamirano, J.M., Altshuler, E., Batista-Leyva, A.J., Ruiz-Suárez, J.C.: Infinite penetration of a projectile into a granular medium. Phys. Rev. Lett. 106, 218001 (2011). https://doi.org/10.1103/PhysRevLett.106.218001

    Article  ADS  Google Scholar 

  57. Bester, C.S., Behringer, R.P.: Collisional model of energy dissipation in three-dimensional granular impact. Phys. Rev. E 95, 032906 (2017). https://doi.org/10.1103/PhysRevE.95.032906

    Article  ADS  Google Scholar 

  58. Ambroso, M.A., Kamien, R.D., Durian, D.J.: Dynamics of shallow impact cratering. Phys. Rev. E 72, 041305 (2005). https://doi.org/10.1103/PhysRevE.72.041305

    Article  ADS  Google Scholar 

Download references

Acknowledgements

This research was supported by the National Natural Science Foundation of China (Nos. 12172085, 11672066). The authors greatly appreciate the provided financial support, which made this study possible.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Honghua Zhao.

Ethics declarations

Conflict of interest

The authors state that this article has no conflict of interest with anybody or any organizations.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, X., Zhang, D., Wang, Y. et al. Dynamic characteristics of sphere impact into wet granular materials considering suction. Granular Matter 25, 18 (2023). https://doi.org/10.1007/s10035-022-01304-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10035-022-01304-9

Keywords

Navigation