Skip to main content
Log in

How vorticity and agglomeration control shear strength in soft cohesive granular flows

  • Original Paper
  • Published:
Granular Matter Aims and scope Submit manuscript

Abstract

Deformable granular flows present complex kinematics. These materials can have various flow regimes: plastic, agglomerated, rigid-like granular flow, etc. In this paper, a multibody meshfree model is used to investigate the consequences of cohesion, stiffness, and viscosity of the particles on their collective sheared flows in tribological contacts. An approach derived from fluid mechanics postprocessing tools, based on vortex detection, is employed to understand the links between these parameters and the emerging friction coefficient of the sheared interface. These results pave the way to complete kinematic studies of third body simulations in tribological contacts.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17

Similar content being viewed by others

References

  1. Dowson, D.: History of Tribology, 2nd edn. Wiley, Hoboken (1998)

    Google Scholar 

  2. Descartes, S., Courtieux, L., Berthier, Y., Peditto, F.: Tribological study of oral care silica. Tribol. Int. 82, 551–560 (2015). https://doi.org/10.1016/j.triboint.2014.02.023

    Article  Google Scholar 

  3. Godet, M.: The third-body approach: a mechanical view of wear. Wear 100, 437–452 (1984). https://doi.org/10.1016/0043-1648(84)90025-5

    Article  Google Scholar 

  4. Berthier, Y., Vincent, L., Godet, M.: Velocity accommodation in fretting. Wear 125, 25–38 (1988). https://doi.org/10.1016/0043-1648(88)90191-3

    Article  Google Scholar 

  5. Berthier, Y., Vincent, L., Godet, M.: Fretting fatigue and fretting wear. Tribol. Int. 22, 235–242 (1989). https://doi.org/10.1016/0301-679X(89)90081-9

    Article  Google Scholar 

  6. Kounoudji, K.A., Renouf, M., Mollon, G., Berthier, Y.: Role of third body on bolted joints’ self-loosening. Tribol. Lett. 61, 25 (2016). https://doi.org/10.1007/s11249-016-0640-8

    Article  Google Scholar 

  7. Vingsbo, O., Söderberg, S.: On fretting maps. Wear 126, 131–147 (1988). https://doi.org/10.1016/0043-1648(88)90134-2

    Article  Google Scholar 

  8. Vincent, L., Berthier, Y., Dubourg, M.-C., Godet, M.: Mechanics and materials in fretting. Wear 153, 135–148 (1992). https://doi.org/10.1016/0043-1648(92)90266-B

    Article  Google Scholar 

  9. Collins, J.A.: Failure of Materials in Mechanical Design, 2nd edn. Wiley, Honoken (1993)

    Google Scholar 

  10. Arnaud, P., Baydoun, S., Fouvry, S.: Modeling adhesive and abrasive wear phenomena in fretting interfaces: a multiphysics approach coupling friction energy, third body and contact oxygenation concepts. Tribol. Int. 161, 107077 (2021). https://doi.org/10.1016/j.triboint.2021.107077

    Article  Google Scholar 

  11. Baydoun, S., Fouvry, S., Descartes, S.: Modeling contact size effect on fretting wear: a combined contact oxygenation-third body approach. Wear (2021). https://doi.org/10.1016/j.wear.2021.204168

    Article  Google Scholar 

  12. Wang, D., Dijksman, J.A., Barés, J., Zheng, H.: Strain dependent vorticity in sheared granular media. EPJ Web Conf. 249, 02010 (2021). https://doi.org/10.1051/epjconf/202124902010

    Article  Google Scholar 

  13. Forterre, Y., Pouliquen, O.: Stability analysis of rapid granular chute flows: formation of longitudinal vortices. J. Fluid Mech. 467, 361–387 (2002). https://doi.org/10.1017/S0022112002001581

    Article  ADS  MATH  Google Scholar 

  14. Abedi, S., Rechenmacher, A.L., Orlando, A.D.: Vortex formation and dissolution in sheared sands. Granul. Matter. 14, 695–705 (2012). https://doi.org/10.1007/s10035-012-0369-5

    Article  Google Scholar 

  15. Rognon, P., Miller, T., Einav, I.: A circulation-based method for detecting vortices in granular materials. Granul. Matter. 17, 177–188 (2015). https://doi.org/10.1007/s10035-015-0549-1

    Article  Google Scholar 

  16. Ding, J., Leen, S.B., McColl, I.R.: The effect of slip regime on fretting wear-induced stress evolution. Int. J. Fatigue 26, 521–531 (2004). https://doi.org/10.1016/j.ijfatigue.2003.09.001

    Article  Google Scholar 

  17. Basseville, S., Cailletaud, G.: An evaluation of the competition between wear and crack initiation in fretting conditions for Ti–6Al–4V alloy. Wear 328–329, 443–455 (2015). https://doi.org/10.1016/j.wear.2015.03.010

    Article  Google Scholar 

  18. Mary, C., Fouvry, S.: Numerical prediction of fretting contact durability using energy wear approach: optimisation of finite-element model. Wear 263, 444–450 (2007). https://doi.org/10.1016/j.wear.2007.01.116

    Article  Google Scholar 

  19. Paulin, C., Fouvry, S., Meunier, C.: Finite element modelling of fretting wear surface evolution: application to a Ti–6A1–4V contact. Wear 264, 26–36 (2008). https://doi.org/10.1016/j.wear.2007.01.037

    Article  Google Scholar 

  20. Ding, J., McColl, I.R., Leen, S.B., Shipway, P.H.: A finite element based approach to simulating the effects of debris on fretting wear. Wear 263, 481–491 (2007). https://doi.org/10.1016/j.wear.2006.12.056

    Article  Google Scholar 

  21. Gallego, L., Nélias, D., Deyber, S.: A fast and efficient contact algorithm for fretting problems applied to fretting modes I, II and III. Wear 268, 208–222 (2010). https://doi.org/10.1016/j.wear.2009.07.019

    Article  Google Scholar 

  22. Gallego, L., Fulleringer, B., Deyber, S., Nélias, D.: Multiscale computation of fretting wear at the blade/disk interface. Tribol. Int. 43, 708–718 (2010). https://doi.org/10.1016/j.triboint.2009.10.011

    Article  Google Scholar 

  23. Renouf, M., Massi, F., Fillot, N., Saulot, A.: Numerical tribology of a dry contact. Tribol. Int. 44, 834–844 (2011). https://doi.org/10.1016/j.triboint.2011.02.008

    Article  Google Scholar 

  24. Cundall, P.A., Hart, R.D.: Numerical modelling of dicontinua. Eng. Comput. 9, 101–113 (1992). https://doi.org/10.1108/eb023851

    Article  Google Scholar 

  25. Chapteuil, É., Renouf, M., Zeng, C., Berthier, Y.: Influence of copper/graphite properties on the tribological and electrical behavior of copper-graphite third body layer. Lubricants 6, 109 (2018). https://doi.org/10.3390/lubricants6040109

    Article  Google Scholar 

  26. Rivière, J., Renouf, M., Berthier, Y.: Thermo-mechanical investigations of a tribological interface. Tribol. Lett. 58, 48 (2015). https://doi.org/10.1007/s11249-015-0523-4

    Article  Google Scholar 

  27. Champagne, M., Renouf, M., Berthier, Y.: Modeling wear for heterogeneous bi-phasic materials using discrete elements approach. J. Tribol. 136, 1–11 (2014). https://doi.org/10.1115/1.4026053

    Article  Google Scholar 

  28. Renouf, M., Fillot, N.: Coupling electrical and mechanical effects in discrete element simulations. Int. J. Numer. Methods Eng. 74, 238–254 (2008). https://doi.org/10.1002/nme.2157

    Article  MATH  Google Scholar 

  29. Descartes, S., Renouf, M., Fillot, N., Gautier, B., Descamps, A., Berthier, Y., Demanche, P.: A new mechanical–electrical approach to the wheel-rail contact. Wear 265, 1408–1416 (2008). https://doi.org/10.1016/j.wear.2008.02.040

    Article  Google Scholar 

  30. Renouf, M., Nhu, V.-H., Saulot, A., Massi, F.: First-body versus third-nody: dialogue between an experiment and a combined discrete and finite element approach. J. Tribol. 136, 1–9 (2014). https://doi.org/10.1115/1.4026062

    Article  Google Scholar 

  31. Li, W., Huang, Y., Fu, B., Cui, Y., Dong, S.: Fretting damage modeling of liner-bearing interaction by combined finite element–discrete element method. Tribol. Int. 61, 19–31 (2013). https://doi.org/10.1016/j.triboint.2012.11.019

    Article  Google Scholar 

  32. Leonard, B.D., Ghosh, A., Sadeghi, F., Shinde, S., Mittelbach, M.: Third body modeling in fretting using the combined finite-discrete element method. Int. J. Solids Struct. 51, 1375–1389 (2014). https://doi.org/10.1016/j.ijsolstr.2013.12.036

    Article  Google Scholar 

  33. Dijksman, J.A., Brodu, N., Behringer, R.P.: Refractive index matched scanning and detection of soft particles. Rev. Sci. Instrum. 88, 051807 (2017). https://doi.org/10.1063/1.4983047

    Article  ADS  Google Scholar 

  34. Vu, T.-L., Barés, J.: Soft-grain compression: beyond the jamming point. Phys. Rev. E. 100, 042907 (2019). https://doi.org/10.1103/PhysRevE.100.042907

    Article  ADS  Google Scholar 

  35. Cantor, D., Cárdenas-Barrantes, M., Preechawuttipong, I., Renouf, M., Azéma, E.: Compaction model for highly deformable particle assemblies. Phys. Rev. Lett. 124, 208003 (2020). https://doi.org/10.1103/PhysRevLett.124.208003

    Article  ADS  Google Scholar 

  36. Nguyen, T.H., Nezamabadi, S., Delenne, J.-Y., Radjai, F.: Compaction of granular materials composed of deformable particles. EPJ Web Conf. 140, 05013 (2017). https://doi.org/10.1051/epjconf/201714005013

    Article  Google Scholar 

  37. Harthong, B., Jérier, J.-F., Richefeu, V., Chareyre, B., Dorémus, P., Imbault, D., Donzé, F.-V.: Contact impingement in packings of elastic–plastic spheres, application to powder compaction. Int. J. Mech. Sci. 61, 32–43 (2012). https://doi.org/10.1016/j.ijmecsci.2012.04.013

    Article  Google Scholar 

  38. Favier de Coulomb, A., Bouzid, M., Claudin, P., Clément, E., Andreotti, B.: Rheology of granular flows across the transition from soft to rigid particles. Phys. Rev. Fluids. 2, 102301 (2017). https://doi.org/10.1103/PhysRevFluids.2.102301

    Article  ADS  Google Scholar 

  39. Doucet, J.-P., Weber, J.: Computer-Aided Molecular Design: Theory and Applications. Academic Press, Cambridge (1996)

    Google Scholar 

  40. Aghababaei, R., Warner, D.H., Molinari, J.-F.: Critical length scale controls adhesive wear mechanisms. Nat. Commun. 7, 11816 (2016). https://doi.org/10.1038/ncomms11816

    Article  ADS  Google Scholar 

  41. Molinari, J.-F., Aghababaei, R., Brink, T., Frérot, L., Milanese, E.: Adhesive wear mechanisms uncovered by atomistic simulations. Friction. 6, 245–259 (2018). https://doi.org/10.1007/s40544-018-0234-6

    Article  Google Scholar 

  42. Robbins, M.O., Müser, M.H.: Computer simulations of friction, lubrication, and wear. In: Modern Tribology Handbook, Two Volume Set, pp. 717–765 (2000). https://doi.org/10.1201/9780849377877.ch20

  43. Mollon, G.: Solid flow regimes within dry sliding contacts. Tribol. Lett. 67, 120 (2019). https://doi.org/10.1007/s11249-019-1233-0

    Article  Google Scholar 

  44. Mollon, G.: A multibody meshfree strategy for the simulation of highly deformable granular materials. Int. J. Numer. Methods Eng. 108, 1477–1497 (2016). https://doi.org/10.1002/nme.5258

    Article  MathSciNet  Google Scholar 

  45. Mollon, G.: A unified numerical framework for rigid and compliant granular materials. Comput. Part. Mech. 5, 517–527 (2018). https://doi.org/10.1007/s40571-018-0187-6

    Article  Google Scholar 

  46. Zhang, Y., Mollon, G., Descartes, S.: Significance of third body rheology in friction at a dry sliding interface observed by a multibody meshfree model: influence of cohesion between particles. Tribol. Int. 145, 106188 (2020). https://doi.org/10.1016/j.triboint.2020.106188

    Article  Google Scholar 

  47. Quacquarelli, A., Mollon, G., Commeau, T., Fillot, N.: A dual numerical-experimental approach for modeling wear of Diamond Impregnated Tools. Wear 478–479, 203763 (2021). https://doi.org/10.1016/j.wear.2021.203763

    Article  Google Scholar 

  48. Casas, N., Mollon, G., Daouadji, A.: DEM analyses of cemented granular fault gouges at the onset of seismic sliding: peak strength, development of shear zones and kinematics. Earth Sp. Sci. Open Arch. (2021). https://doi.org/10.1002/essoar.10507128.1

    Article  Google Scholar 

  49. Jaza, R., Mollon, G., Descartes, S., Paquet, A., Berthier, Y.: Lessons learned using machine learning to link third body particles morphology to interface rheology. Tribol. Int. 153, 106630 (2021). https://doi.org/10.1016/j.triboint.2020.106630

    Article  Google Scholar 

  50. Graftieaux, L., Michard, M., Grosjean, N.: Combining PIV, POD and vortex identification algorithms for the study of unsteady turbulent swirling flows. Meas. Sci. Technol. 12, 1422–1429 (2001). https://doi.org/10.1088/0957-0233/12/9/307

    Article  ADS  Google Scholar 

  51. Berson, A., Michard, M., Blanc-Benon, P.: Vortex identification and tracking in unsteady flows. C. R. Mec. 337, 61–67 (2009). https://doi.org/10.1016/j.crme.2009.03.006

    Article  ADS  MATH  Google Scholar 

  52. Macaulay, M., Rognon, P.: Viscosity of cohesive granular flows. Soft Matter 17, 165–173 (2021). https://doi.org/10.1039/D0SM01456G

    Article  ADS  MATH  Google Scholar 

  53. Mandal, S., Nicolas, M., Pouliquen, O.: Rheology of cohesive granular media: shear banding, hysteresis, and nonlocal effects. Phys. Rev. X 11, 021017 (2021). https://doi.org/10.1103/PhysRevX.11.021017

    Article  Google Scholar 

  54. Mollon, G.: The soft discrete element method. Granul. Matter. 24, 11 (2022). https://doi.org/10.1007/s10035-021-01172-9

    Article  Google Scholar 

Download references

Acknowledgements

The authors gratefully acknowledge Safran Aircraft Engines and the French National Research and Technology Agency (ANRT) for financially supporting this research project. The authors acknowledge that this study contains original material. Its publication has been approved tacitly by the responsible authorities at the institutes where the work has been carried out.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Guilhem Mollon.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bouillanne, O., Mollon, G., Saulot, A. et al. How vorticity and agglomeration control shear strength in soft cohesive granular flows. Granular Matter 24, 55 (2022). https://doi.org/10.1007/s10035-022-01216-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10035-022-01216-8

Keywords

Navigation