Skip to main content
Log in

Evaluating the particle rolling effect on the characteristic features of granular material under the critical state soil mechanics framework

  • Original Paper
  • Published:
Granular Matter Aims and scope Submit manuscript

Abstract

The discrete element method (DEM) has been extensively used to capture the macroscopic and particulate response of granular materials. Although particle rolling (i.e. controlled by rolling resistance) has been acknowledged as a major contributing factor towards micro-mechanical behaviour of idealized spherical granular material, its influence on characteristic behaviour has not been thoroughly investigated within critical state soil mechanics (CSSM) framework. For instance, the influence of particle rolling on characteristic features of undrained and drained behaviour (e.g. phase transformation, characteristic state, instability, dilatancy, critical state) and the state parameter, (ψ) has not been captured. In this study, a series of constant volume (CV) and drained triaxial compression simulations were undertaken using a rolling resistance linear contact model, deployed within a DEM software. The CSSM framework was centrally used to assess the influence of particle rolling tendencies/resistance on CV and drained behaviours from both a macro- and micro-mechanical standpoint. The study advanced the current understanding of the influence of rolling resistance on CS-related behaviour.

Graphic abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20

Similar content being viewed by others

Abbreviations

Δu :

Excess pore water pressure

ε q :

Deviatoric strain

ε v :

Volumetric strain

η IS :

Stress ratio at instability state

η ChS :

Stress ratio at instability state

η PT :

Stress ratio at phase transformation

μ :

Inter-particle friction coefficient

μ r :

Rolling resistance coefficient

σ 11 :

Maximum principal stress

σ 33 :

Minor principal stress

ϕ cv :

Constant volume friction angle

ϕ p :

Peak friction angle

ψ :

State parameter

ψ 0 :

State parameter at the beginning of shearing

ω avg :

Average angular velocity

ω cs :

Average angular velocity at critical state

CN :

Coordination number

D 50 :

Median particle size

e :

Void ratio

e 0 :

POST-consolidation void ratio

F :

Fabric tensor

F vM :

Von Mises fabric

I :

Inertial number

k n :

Normal contact stiffness

k s :

Tangential contact stiffness

k r :

Rolling contact stiffness

M :

Slope of CSL in q − p′ space

N :

Total number of particles

N c :

Total number of contacts

p′:

Mean effective confining stress

pcs :

Mean effective confining stress at critical state

p0 :

Post-consolidation mean effective confining stress

q :

Deviatoric stress

References

  1. Aboul Hosn, R., Sibille, L., Benahmed, N., Chareyre, B.: Discrete numerical modeling of loose soil with spherical particles and interparticle rolling friction. Granular Matter 19(1), 1–12 (2017)

    Google Scholar 

  2. Ai, J., Chen, J., Rotter, M., Ooi, J.Y.: Assessment of rolling resistance models in discrete element simulations. Powder Technol. 206, 269–282 (2011)

    Google Scholar 

  3. Barnett, N., Rahman, M.M., Karim, M.R., Nguyen, H.B.K., Carraro, J.A.H.: Equivalent state theory for sand with non-plastic fine mixtures: a DEM investigation. In press, Geotechnique (2020)

    Google Scholar 

  4. Been, K., Jefferies, M.G.: A state parameter for sands. Geotechnique 35(2), 99–112 (1985)

    Google Scholar 

  5. Been, K., Jefferies, M.G., Hachey, J.: The critical state of sands. Geotechnique 41(3), 365–381 (1991)

    Google Scholar 

  6. Bobei, D.C., Wanatowski, D., Rahman, M.M., Lo, S.R., Gnanendran, C.T.: The effect of drained pre-shearing on the undrained behaviour of loose sand with a small amount of fines. Acta Geotech. 8(3), 311–322 (2013)

    Google Scholar 

  7. Calvetti, F., Emeriault, F.: Interparticle forces distribution in granular materials: link with the macroscopic behaviour. Mech. Cohes-Frict. Mat. 4(3), 247–279 (1999)

    Google Scholar 

  8. Carrera, A., Coop, M., Lancellotta, R.: Influence of grading on the mechanical behaviour of stava tailings. Geotechnique 61(11), 935–946 (2011)

    Google Scholar 

  9. Casagrande, A.: Liquefaction and cyclic deformation of sands. In: 5th Pan American conference on soil mechanics Buenos Aires, pp. 80–133 (1975)

  10. Chang, X., Wang, Y., Zhou, W., Ma, G., Liu, J.: The influence of rotational resistance on critical state of granular materials. In: Proceedings of the 7th International Conference on Discrete Element Methods (2016)

  11. Christoffersen, J., Mehrabadi, M.M., Nemat-Nasser, S.: A micromechanical description of granular material behavior. J. Appl. Mech. 48(2), 339–344 (1981)

    ADS  MATH  Google Scholar 

  12. Chu, J.: An experimental examination of the critical state and other similar concepts for granular soils. Can. Geotech. J. 32(6), 1065–1075 (1995)

    Google Scholar 

  13. Chu, J., Leong, W.K.: Effect of fines on instability behaviour of loose sand. Geotechnique 52(10), 751–755 (2002)

    Google Scholar 

  14. Cundall, P.A., Strack, O.D.L.: A discrete numerical model for granular assemblies. Geotechnique 29(1), 47–65 (1979)

    Google Scholar 

  15. da Cruz, F., Emam, S., Prochnow, M., Roux, J.-N., Chevoir, F.: Rheophysics of dense granular materials: discrete simulation of plane shear flows. Phys. Rev. E 72(2), 021309 (2005)

    ADS  Google Scholar 

  16. Dafalias, Y.F., Taiebat, M.: SANISAND-Z: zero elastic range sand plasticity model. Geotechnique, 1–15 (2016)

  17. Estrada, N., Taboada, A., Radjaï, F.: Shear strength and force transmission in granular media with rolling resistance. Phys. Rev. E Stat. Nonlinear Soft Matter Phys. 78(2), 021301–021301 (2008)

  18. Fonseca, J., O’Sullivan, C., Coop, M., Lee, P.D.: Quantifying the evolution of soil fabric during shearing using directional parameters. Geotechnique 63(6), 487–499 (2013)

    Google Scholar 

  19. Fonseca, J., O’sullivan, C., Coop, M.R., Lee, P.D.: Non-invasive characterization of particle morphology of natural sands. Soils Found. 52(4), 712–722 (2012)

    Google Scholar 

  20. Frossard, E.: Effect of sand grain shape on interparticle friction; indirect measurements by Rowe’s stress dilatancy theory. Geotechnique 29(3), 341–350 (1979)

    Google Scholar 

  21. Fu, P., Dafalias, Y.F.: Fabric evolution within shear bands of granular materials and its relation to critical state theory. Int. J. Numer. Anal. Meth. Geomech. 35(18), 1918–1948 (2011)

    Google Scholar 

  22. Gu, X., Huang, M., Qian, J.: DEM investigation on the evolution of microstructure in granular soils under shearing. Granular Matter 16(1), 91–106 (2014)

    Google Scholar 

  23. Guo, N., Zhao, J.: The signature of shear-induced anisotropy in granular media. Comput. Geotech. 47, 1–15 (2013)

    ADS  MathSciNet  Google Scholar 

  24. Guo, P., Su, X.: Shear strength, interparticle locking, and dilatancy of granular materials. Can. Geotech. J. 44(5), 579–591 (2007)

    Google Scholar 

  25. Hasan, A., Alshibli, K.A.: Experimental assessment of 3D particle-to-particle interaction within sheared sand using synchrotron microtomography. Geotechnique 60(5), 369–379 (2012)

    Google Scholar 

  26. Huang, X., Hanley, K.J., O’Sullivan, C., Kwok, C.Y.: Exploring the influence of interparticle friction on critical state behaviour using DEM. Int. J. Numer. Anal. Meth. Geomech. 38(12), 1276–1297 (2014)

    Google Scholar 

  27. Huang, X., Hanley, K.J., O’sullivan, C., Kwok, C.-Y.: Implementation of rotational resistance models: a critical appraisal. Particuology 34, 14–23 (2017)

    Google Scholar 

  28. Huang, X., O’sullivan, C., Hanley, K.J., Kwok, C.Y.: Discrete-element method analysis of the state parameter. Geotechnique, 954–965 (2014)

  29. Ishihara, K.: Liquefaction and flow failure during earthquakes. Geotechnique 43(3), 351–415 (1993)

    Google Scholar 

  30. Isomokos, A., Georgiannou, V.: Effect of grain shape and angularity on the undrained response of fine sands. Can. Geotech. J. 47(5), 539 (2010)

    Google Scholar 

  31. Itasca: Particle Flow Code in 3 Dimensions (PFC3D) Version 4. Minnesota, USA (2008)

    Google Scholar 

  32. Iwashita, K., Oda, M.: Rolling resistance at contacts in simulation of shear band development by DEM. J. Eng. Mech. 124, 285–292 (1998)

    Google Scholar 

  33. Iwashita, K., Oda, M.: Micro-deformation mechanism of shear banding process based on modified distinct element method. Powder Technol. 109(1), 192–205 (2000)

    Google Scholar 

  34. Jefferies, M.G.: Nor-Sand: a simple critical state model for sand. Geotechnique 43(1), 91–103 (1993)

    Google Scholar 

  35. Jiang, M.J., Yu, H.-S., Harris, D.: A novel discrete model for granular material incorporating rolling resistance. Comput. Geotech. 32(5), 340–357 (2005)

    Google Scholar 

  36. Kuhn, M.R., Bagi, K.: Specimen size effect in discrete element simulations of granular assemblies. J. Eng. Mech. 109(1), 485–492 (2018)

    Google Scholar 

  37. Lade, P.V.: Static instability and liquefaction of loose fine sandy slopes. J Geotech. Eng.-Asce. 118(1), 51–71 (1992)

    Google Scholar 

  38. Lade, P.V., Ibsen, L.B.: A study of the phase transformation and characteristic lines of sand. In: Deformation and Progressive Failure in Geomechanics IS-NAGOYA, pp. 353–358 (1997)

  39. Lashkari, A., Khodadadi, M., Binesh, S.M., Rahman, Md.M.: Instability of particulate assemblies under constant shear drained stress path: DEM approach. Int. J. Geomech. 19(6), 04019049 (2019)

    Google Scholar 

  40. Lee, K.L., Seed, H.B.: Dynamic strength of anisotropically consolidated sand. Proc. ASCE 93(SM5), 169–190 (1967)

    Google Scholar 

  41. Li, X., Dafalias, Y.: Anisotropic critical state theory: role of fabric. J. Eng. Mech. 138(3), 263–275 (2012)

    Google Scholar 

  42. Li, X.S.: A sand model with state-dependent dilatancy. Geotechnique 52(3), 173–186 (2002)

    Google Scholar 

  43. Li, X.S., Dafalias, Y.F.: Dilatancy for cohesionless soils. Geotechnique 50(4), 449–460 (2000)

    Google Scholar 

  44. Li, X.S., Dafalias, Y.F.: A constitutive framework for anisotropic sand including nonproportional loading. Geotechnique 54(1), 41–55 (2004)

    Google Scholar 

  45. Li, X.S., Dafalias, Y.F., Wang, Z.-L.: State-dependant dilatancy in critical-state constitutive modelling of sand. Can. Geotech. J. 36(4), 599–611 (1999)

    Google Scholar 

  46. Liu, Y., Liu, H., Mao, H.: The influence of rolling resistance on the stress-dilatancy and fabric anisotropy of granular materials. Granular Matter 20(1), 1–16 (2018)

    ADS  MathSciNet  Google Scholar 

  47. Lopera Perez, J.C., Kwok, C.Y., O’Sullivan, C., Huang, X., Hanley, K.J.: Assessing the quasi-static conditions for shearing in granular media within the critical state soil mechanics framework. Soils Found. 56(1), 152–159 (2016)

    Google Scholar 

  48. Manzari, M.T., Dafalias, Y.F.: A critical state two-surface plasticity model for sands. Geotechnique 47(2), 255–272 (1997)

    Google Scholar 

  49. Marketos, G., Bolton, M.D.: Flat boundaries and their effect on sand testing. Int. J. Numer. Anal. Meth. Geomech. 34(8), 821–837 (2010)

    MATH  Google Scholar 

  50. MiDi, G.D.R.: On dense granular flows. Eur. Phys. J. E 14(4), 341–365 (2004)

    Google Scholar 

  51. Minh, N., Cheng, Y.: A DEM investigation of the effect of particle-size distribution on one-dimensional compression. Geotechnique 63(1), 44–53 (2013)

    Google Scholar 

  52. Minh, N., Cheng, Y., Thornton, C.: Strong force networks in granular mixtures. Granular Matter 16(1), 69–78 (2014)

    Google Scholar 

  53. Mizanur, R.M., Lo, S.R.: Predicting the onset of static liquefaction of loose sand with fines. J. Geotech. Geoenviron. Eng. 138(8), 1037–1041 (2012)

    Google Scholar 

  54. Mohamed, A., Gutierrez, M.: Comprehensive study of the effects of rolling resistance on the stress-strain and strain localization behavior of granular materials. Granular Matter 12(5), 527–541 (2010)

    MATH  Google Scholar 

  55. Murthy, T.G., Loukidis, D., Carraro, J.A.H., Prezzi, M., Salgado, R.: Undrained monotonic response of clean and silty sands. Geotechnique 57(3), 273–288 (2007)

    Google Scholar 

  56. Nakata, Y., Hyodo, M., Murata, H., Yasufuku, N.: Flow deformation of sands subjected to principal stress rotation. Soils Found. 38(2), 115–128 (1998)

    Google Scholar 

  57. Nguyen, H.B.K.: Critical State Behaviour of Granular Materials and Associated Micro-Mechanics: A DEM Study. University of South Australia, Adelaide (2017)

    Google Scholar 

  58. Nguyen, H.B.K., Rahman, M.M., Cameron, D.A., Fourie, A.B.: The effect of consolidation path on undrained behaviour of sand - A DEM approach. In: A. M. Fusao Oka, Ryosuke Uzuoka, Sayuri Kimoto (eds.) Computer Methods and Recent Advances in Geomechanics. CRC Press: Taylor & Francis Group, pp. 175–180 (2015)

  59. Nguyen, H.B.K., Rahman, M.M., Fourie, A.B.: Undrained behaviour of granular material and the role of fabric in isotropic and K0 consolidations: DEM approach. Geotechnique 67(2), 153–167 (2017)

    Google Scholar 

  60. Nguyen, H.B.K., Rahman, M.M., Fourie, A.B.: Characteristic behavior of drained and undrained triaxial compression tests: DEM study. J. Geotech. Geoenviron. Eng. 144(9), 1–13 (2018)

    Google Scholar 

  61. Nguyen, H.B.K., Rahman, M.M., Fourie, A.B.: How particle shape affects the critical state, triggering of instability and dilatancy of granular materials – results from a DEM study. Géotechnique (2020). https://doi.org/10.1680/jgeot.18.P.211

  62. Nguyen, H.B.K., Rahman, M.M., Fourie, A.B.: Effect of Particle Shape on Constitutive Relation: DEM Study. J. Geotech. Geoenviron. Eng. 146(7), 04020058 (2020)

    Google Scholar 

  63. O’sullivan, C., Wadee, M.A., Hanley, K.J., Barreto, D.: Use of DEM and elastic stability analysis to explain the influence of the intermediate principal stress on shear strength. Geotechnique, 1298–1309 (2013)

  64. Oda, M.: Fabric tensor for discontinuous geological materials. Soils Found. 22(4), 96–108 (1982)

    Google Scholar 

  65. Oda, M., Kazama, M.: Microstructure of shear bands and its relation to the mechanisms of dilatancy and failure of dense granular soils. Geotechnique 48(4), 465–481 (1998)

    Google Scholar 

  66. Oda, M., Konishi, J., Nemat-Nasser, S.: Experimental micromechanical evaluation of strength of granular materials: effect of particle rolling. Mech. Mater. 1, 269–283 (1982)

    Google Scholar 

  67. Perez, J.C.L., Kwok, C.Y., O’Sullivan, C., Huang, X., Hanley, K.J.: Exploring the micro-mechanics of triaxial instability in granular materials. Geotechnique, 1–16 (2016)

  68. Plassiard, J., Belheine, N., Donzé, F.: A spherical discrete element model: calibration procedure and incremental response. Granular Matter 11(5), 293–306 (2009)

    MATH  Google Scholar 

  69. Qadimi, A., Coop, M.R.: The undrained cyclic behaviour of a carbonate sand. Geotechnique 57(9), 739–750 (2007)

    Google Scholar 

  70. Rabbi, A.T.M.Z., Rahman, M.M., Cameron, D.A.: Undrained behavior of silty sand and the role of isotropic and K0 consolidation. J. Geotech. Geoenviron. Eng. 144(4), 1–11 (2018)

    Google Scholar 

  71. Rabbi, A.T.M.Z., Rahman, M.M., Cameron, D.A.: Critical state study of natural silty sand instability under undrained and constant shear drained path. Int. J. Geomech. 19(8), 04019083 (2019)

    Google Scholar 

  72. Radjai, F., Wolf, D.E., Jean, M., Moreau, J.: Bimodal character of stress transmission in granular packings. Phys. Rev. Lett. 80(1), 61–64 (1998)

    ADS  Google Scholar 

  73. Rahman, M., Baki, M., Lo, S.: Prediction of undrained monotonic and cyclic liquefaction behavior of sand with fines based on the equivalent granular state parameter. Int. J. Geomech. 14(2), 254–266 (2014)

    Google Scholar 

  74. Rahman, M.M., Lo, S.-C.R., Dafalias, Y.F.: Modelling the static liquefaction of sand with low-plasticity fines. Geotechnique 64(11), 881–894 (2014)

    Google Scholar 

  75. Rahman, M.M., Lo, S.R.: Undrained behaviour of sand-fines mixtures and their state parameters. J. Geotech. Geoenviron. Eng. 140(7) (2014)

  76. Rahman, M.M., Nguyen, H.B.K., Rabbi, A.T.M.Z.: The effect of consolidation on undrained behaviour of granular materials: experiment and DEM simulation. Geotech. Res. 5(4), 199–217 (2018). https://doi.org/10.1680/jgere.17.00019

    Article  Google Scholar 

  77. Rahman, M.M., Nguyen, H.B.K., Fourie, A.B., Kuhn, M.: Critical state soil mechanics for cyclic liquefaction and post-liquefaction behaviour: a DEM study. J. Geotech. Geoenviron. Eng. (2020). https://doi.org/10.1061/(ASCE)GT.1943-5606.0002453

    Article  Google Scholar 

  78. Rothenburg, L., Bathurst, R.J.: Analytical study of induced anisotropy in idealized granular materials. Geotechnique 39(4), 601–614 (1989)

    Google Scholar 

  79. Rowe, P.W.: The stress-dilatancy relation for static equilibrium of an assembly of particles in contact. Proc. R. Soc. Lond. Ser. A Math. Phys. Sci., 269(1339), 500–527 (1962)

  80. Satake, M.: Fabric tensor in granular materials. In: Proceedings of the IUTAM Symposium on Deformations and Failure of Granular Materials, pp. 93–96 (1982)

  81. Sitharam, T.G., Vinod, J.S., Ravishankar, B.V.: Evaluation of undrained response from drained triaxial shear tests: DEM simulations and experiments. Geotechnique 58(7), 605–608 (2008)

    Google Scholar 

  82. Sladen, J.A., D’Hollander, R.D., Krahn, J.: The liquefaction of sands, a collapse surface approach. Can. Geotech. J. 22(4), 564–578 (1985)

    Google Scholar 

  83. Sukumaran, B., Leonards, G.A., Fox, J.P.: Discussion: liquefaction and postliquefaction behaviour of sand. J. Geotech. Geoenviron. Eng. 122(6), 502–503 (1996)

    Google Scholar 

  84. Tang, H., Dong, Y., Chu, X., Zhang, X.: The influence of particle rolling and imperfections on the formation of shear bands in granular material. Granular Matter 18(1), 1–12 (2016)

    Google Scholar 

  85. Vaid, Y.P., Sivathayalan, S., Stedman, D.: Influence of specimen-reconstituting method on the undrained response of sand. Geotech. Test. J. 22(3), 187–195 (1999)

    Google Scholar 

  86. Yan, W., Dong, J.: Effect of particle grading on the response of an idealized granular assemblage. Int. J. Geomech. 11(4), 276–285 (2011)

    Google Scholar 

  87. Yang, J.: Non-uniqueness of flow liquefaction line for loose sand. Geotechnique 52(10), 757–760 (2002)

    Google Scholar 

  88. Yang, J., Dai, B.B.: Is the quasi-steady state a real behaviour? A micromechanical perspective. Geotechnique 61(2), 175–183 (2011)

    Google Scholar 

  89. Yang, Z.X., Li, X.S., Yang, J.: Quantifying and modelling fabric anisotropy of granular soils. Geotechnique 58(4), 237–248 (2008)

    Google Scholar 

  90. Yoshimine, M., Ishihara, K.: Flow potential of sand during liquefaction. Soils Found. 38(3), 189–198 (1998)

    Google Scholar 

  91. Yoshimine, M., Ishihara, K., Vargas, W.: Effects of principal stress direction and intermediate principal stress on undrained shear behaviour of sand. Soils Found. 38(3), 179–188 (1998)

    Google Scholar 

  92. Zhang, J., Lo, S.C.R., Rahman, M.M., Yan, J.: “Characterizing monotonic behaviour of pond ash within critical state approach. J. Geotech. Geoenviron. Eng., 144(1) (2018)

  93. Zhao, J., Guo, N.: Unique critical state characteristics in granular media considering fabric anisotropy. Geotechnique, 695–704 (2013)

  94. Zhao, J., Guo, N.: Rotational resistance and shear-induced anisotropy in granular media. Acta Mech. Solida Sin. 27(1), 1–14 (2014)

    MathSciNet  Google Scholar 

  95. Zhao, S., Evans, T.M., Zhou, X.: Shear-induced anisotropy of granular materials with rolling resistance and particle shape effects. Int. J. Solids Struct. 150, 268–281 (2018)

    Google Scholar 

  96. Zhou, W., Liu, J., Ma, G., Chang, X.: Three-dimensional DEM investigation of critical state and dilatancy behaviors of granular materials. Acta Geotech. 12(3), 527–540 (2017)

    Google Scholar 

  97. Zhou, W., Xu, K., Ma, G., Yang, L., Chang, X.: Effects of particle size ratio on the macro- and microscopic behaviors of binary mixtures at the maximum packing efficiency state. Granular Matter 18(4), 1–13 (2016)

    ADS  Google Scholar 

  98. Zhou, Y.C., Wright, B.D., Yang, R.Y., Xu, B.H., Yu, A.B.: Rolling friction in the dynamic simulation of sandpile formation. Physica Stat. Mech. Appl. 269(2), 536–553 (1999)

    Google Scholar 

  99. Zhou, Y.C., Xu, B.H., Yu, A.B., Zulli, P.: Numerical investigation of the angle of repose of monosized spheres. Phys. Rev. E 64, 213011 (2001)

    Google Scholar 

  100. Zhu, Y., Nie, Z., Gong, J.: Influence of the rolling-resistance-based shape of coarse particles on the shear responses of granular mixtures. Particuology (2020)

Download references

Acknowledgements

The first author acknowledges the support provided by the Research Training Program domestic (RTPd) scholarship, awarded by The School of Natural and Built Environments, University of South Australia.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to N. Barnett.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 48 kb)

Appendices

Appendix A: Method of deformability

1.1 Computation of stiffness parameters

Through the method of deformability:

$$k_{n} = \frac{{AE^{*} }}{L}$$
(12)
$$k_{s} = \frac{{k_{n} }}{{k^{*} }}$$
(13)
$$k_{r} = k_{s} R_{r}$$
(14)

here A = πr2 represents the contact area. Depending on the type of entities in contact r is computed:

$$r = \left\{ {\begin{array}{*{20}c} {\hbox{min} \left( {R^{\left( 1 \right)} , R^{\left( 2 \right)} } \right), \,for\, \space particle - particle \space \,contacts } \\ {R^{\left( 1 \right)} , \,for \space\, particle - wall \space\, contacts} \\ \end{array} } \right.$$
(15)

where \(R^{\left( 1 \right)}\) denotes the radius of contact entity 1. In similar nature the contact length (L) is computed based on contact type:

$$L = \left\{ {\begin{array}{*{20}c} {R^{\left( 1 \right)} + R^{\left( 2 \right)} , \,for \space\, particle - particle \space\, contacts} \\ {R^{\left( 1 \right)} , \,for \space\, particle - wall \space\, contacts} \\ \end{array} } \right.$$
(16)

E* and k* = kn/ks are input parameters in the study and are discussed and presented in Table 1 in the manuscript. The rolling radius, Rr and its formulation is also presented in the manuscript.

Appendix B: Rolling resistance linear contact model

The rolling resistance linear contact model (RRLCM) utilised in this study adds to the conventional linear contact model commonly used in DEM through the installation of a rolling spring and dashpot at the contact (Fig. 21).

Fig. 21
figure 21

Rolling resistance linear contact model. After Iwashita and Oda [32]

In a rheological sense, the rolling spring signifies the presence of an elastic resisting moment between contacting pieces (\(M_{r}^{k} )\), whilst the dashpot signifies the presence of a viscous moment at the contact \((M_{r}^{d} )\). The overall rolling resistance moment (Mr) may be mathematically defined as:

$$M_{r} = M_{r}^{k} + M_{r}^{d}$$
(17)

to effectively utilize the RRLCM in a numerical modelling environment, Mr must be updated incrementally with respect to the time step. At time t + Δt, \(M_{r}^{k}\) may be computed via:

$$M_{r, \Delta t + t}^{k} = \left\{ {\begin{array}{*{20}c} {M_{r, t}^{k} + \Delta M_{r}^{k} } \\ { \left| {M_{r, t + \Delta t}^{k} } \right| \le M^{*} } \\ \end{array} } \right.$$
(18)

here M* represents the maximum (limiting) resisting torque (\(M^{ *} = \mu_{r} \bar{R}F_{n}\)) and \(\bar{R} = \left( {r_{i} r_{j} } \right)/\left( {r_{i} + r_{j} } \right)\); where Fn is the normal contact force, \(\bar{R}\) represents the effective radius of the contact, \(r_{i}\) and \(r_{j}\) are the radii of contacting entities. When a boundary or wall element is the contacting entity, r → ∞. Notice, when \(\mu_{r} = 0\), \(M^{ *} = 0\) and therefore a free-rolling environment is created. \(M_{r}^{k}\) is the incremental rolling resistance torque observed at time, t + Δt and is computed through consideration of the rolling stiffness, kr and the relative rotation between two contacting particles, θr,

$$\Delta M_{r}^{k} = - k_{r} \Delta \theta_{r}$$
(19)

where kr = ksRr. A limitation of the model is defining a kr which has strong physical basis. kr is related to ks based on an idealized consideration that the moment generated at a contact due to shear displacement is equivalent to the moment generated due to rolling displacement. \(M_{r}^{d}\) in Equation 17 is also updated with respect to the time step, t + Δt:

$$M_{r, t + \Delta t}^{d} = \left\{ {\begin{array}{*{20}c} { - C_{rr}\, if \,\left| {M_{r, t + \Delta t}^{k} } \right| < M^{ *} } \\ { 0 \,if \,\left| {M_{r, t + \Delta t}^{k} } \right| = M^{ *} } \\ \end{array} } \right.$$
(20)

where \(C_{r} = 2_{r} \sqrt {I_{r} k_{r} }\) is the viscous damping rolling coefficient, ηr is the critical viscous damping ratio and Ir is the equivalent moment of inertia about the contact point between two contacting entities. Instead of an oscillating resisting moment applied at the contact, as applied in some rolling resistance contact models [2], the applied resisting moment at the contact within a quasi-static system is stable and therefore the packing behaviour of the assembly is stabilized. For such reasons, this model is often used in DEM simulation of quasi-static systems. Using various modified versions of this model in DEM along with the tuning of μr, some have captured the influence of particle rolling on the behaviour of granular material in triaxial compression. In particular some observed that with the addition of rolling resistance, shear strength and dilatancy increases [32, 46, 54, 94], shear banding and strain localization intensifies [32, 33, 54, 84] and fabric anisotropy intensifies [46].

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Barnett, N., Rahman, M.M., Karim, M.R. et al. Evaluating the particle rolling effect on the characteristic features of granular material under the critical state soil mechanics framework. Granular Matter 22, 89 (2020). https://doi.org/10.1007/s10035-020-01055-5

Download citation

  • Received:

  • Published:

  • DOI: https://doi.org/10.1007/s10035-020-01055-5

Keywords

Navigation