Skip to main content
Log in

Packing and flow profiles of soft grains in 3D silos reconstructed with X-ray computed tomography

  • Original Paper
  • Published:
Granular Matter Aims and scope Submit manuscript

Abstract

The outflow of hard grains from storage containers with narrow outlets has been extensively studied in the past. Most experiments focused on discharge rates and avalanche statistics. Flow fields inside such containers have been detected optically in two-dimensional (2D) or quasi-2D geometries. Soft grains behave qualitatively different in many respects, both in their static packing properties and during silo discharge. We employ X-ray computed tomography to map the particles in a 3D container and we compare the static packing characteristics and the flow profiles of soft hydrogel spheres with those of hard spheres. The local fill fraction of the soft grains depends upon the depth below the granular surface. The outflow of the soft, low frictional hydrogel spheres involves the complete container volume, stagnant zones are absent.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Notes

  1. When averaging finite ensembles, the maximum value of \(\varDelta\) can even become slightly larger than 1/2 due to noise.

References

  1. Jaeger, H.M., Nagel, S.R., Beringer, R.P.: Granular solids, liquids, and gases. Rev. Mod. Phys. 68, 1259 (1996)

    Article  ADS  Google Scholar 

  2. de Gennes, P.G.: Granular matter: a tentative view. Rev. Mod. Phys. 71, S374 (1999)

    Article  Google Scholar 

  3. Campbell, C.S.: Granular material flows—An overview. J. Powder Techn. 162, 208 (2006)

    Article  Google Scholar 

  4. Radjai, F., Roux, J.N., Daouadji, A.: Modeling granular materials: century-long research across scales. J. Eng. Mech. 143(4), 04017002 (2017)

    Article  Google Scholar 

  5. Franklin, F.C., Johanson, L.N.: Flow of granular material through a circular orifice. Chem. Eng. Sci. 4, 119 (1955)

    Article  Google Scholar 

  6. Beverloo, W.A., Leniger, H.A., Van de Velde, J.J.: The flow of granular solids through orifices. Chem. Eng. Sci. 15, 260 (1961)

    Article  Google Scholar 

  7. Neddermann, R.M., Tuzun, U., Savage, S.B., Houlsby, G.T.: The flow of granular materials I: discharge rates from hoppers. Chem. Eng. Sci. 37, 1597 (1982)

    Article  Google Scholar 

  8. Chang, C.S., Converse, H.H., Steele, J.L.: Flow rates of grain through various shapes of vertical and horizontal orifices. Trans. Am. Soc. Agric. Eng. 34, 1789 (1991)

    Article  Google Scholar 

  9. Zuriguel, I., et al.: Jamming during the discharge of granular matter from a silo. Phys. Rev. E 71, 051303 (2005)

    Article  ADS  Google Scholar 

  10. To, K.: Jamming transition in two-dimensional hoppers and silos. Phys. Rev. E 71, 060301 (2005)

    Article  ADS  Google Scholar 

  11. Mankoc, C., Janda, A., Arévalo, R., Pastor, J.M., Zuriguel, I., Garcimartín, A., Maza, D.: The flow rate of granular materials through an orifice. Granul. Matter 9, 407 (2007)

    Article  MATH  Google Scholar 

  12. Mankoc, C., Janda, A., Arévalo, R., Pastor, J.M., Zuriguel, I., Garcimartín, A., D, M.: The flow rate of granular materials through an orifice. Granul. Matter 9, 407 (2007)

    Article  MATH  Google Scholar 

  13. Hilton, J.E., Cleary, P.W.: Granular flow during hopper discharge. Phys. Rev. E 84, 011307 (2011)

    Article  ADS  Google Scholar 

  14. Garcimartín, A., Zuriguel, I., Janda, A., Maza, D.: Fluctuations of grains inside a discharging two-dimensional silo. Phys. Rev. E 84, 031309 (2011)

    Article  ADS  Google Scholar 

  15. Uñac, R.O., Vidales, A.M., Benegas, O.A., Ippolito, I.: Experimental study of discharge rate fluctuations in a silo with different hopper geometries. Powder Technol. 225, 214 (2012)

    Article  Google Scholar 

  16. Masuda, T., Nishinari, K., Schadschneider, A.: Critical bottleneck size for jamless particle flows in two dimensions. Phys. Rev. Lett. 112, 138701 (2014)

    Article  ADS  Google Scholar 

  17. Benyamine, M., Djermane, M., Dalloz-Dubrujeaud, B., Aussillous, P.: Discharge flow of a bidisperse granular media from a silo. Phys. Rev. E 90, 032201 (2014)

    Article  ADS  Google Scholar 

  18. Janda, A., Harich, R., Zuriguel, I., Maza, D., Cixous, P., Garcimartin, A.: Unjamming a granular hopper by vibration. Phys. Rev. E 79, 031302 (2009)

    Article  ADS  Google Scholar 

  19. Sheldon, H.G., Durian, D.J.: Granular discharge and clogging for tilted hoppers. Granul. Matter 12, 579 (2010)

    Article  Google Scholar 

  20. Saraf, S., Franklin, S.V.: Power-law flow statistics in anisometric (wedge) hoppers. Phys. Rev. E 83, 030301 (2011)

    Article  ADS  Google Scholar 

  21. Hirshfeld, D., Rapaport, D.C.: Granular flow from a silo: discrete-particle simulations in three dimensions. Eur. Phys. J. E 4, 193 (2001)

    Article  Google Scholar 

  22. To, K., Lai, P.Y., Pak, H.K.: Jamming of granular flow in a two-dimensional hopper. Phys. Rev. Lett. 86, 71 (2001)

    Article  ADS  Google Scholar 

  23. Manna, S.S., Herrmann, H.J.: Intermittent granular flow and clogging with internal avalanches. Eur. Phys. J. E 1, 341 (2000)

    Article  Google Scholar 

  24. Zuriguel, I., Pugnaloni, L.A., Garcimartín, A., Maza, D.: Jamming during the discharge of grains from a silo described as a percolating transition. Phys. Rev. E 68, 030301 (2003)

    Article  ADS  Google Scholar 

  25. Janda, A., Zuriguel, I., Garcimartín, A., Pugnaloni, L.A., Maza, D.: Jamming and critical outlet size in the discharge of a two-dimensional silo. EPL 84, 44002 (2008)

    Article  ADS  Google Scholar 

  26. Zuriguel, I.: Clogging of granular materials in bottlenecks. P. Phys. 6, 060014 (2014)

    Google Scholar 

  27. Zuriguel, I., et al.: Clogging transition of many-particle systems flowing through bottlenecks. Sci. Rep. 4, 7324 (2014)

    Article  Google Scholar 

  28. Thomas, C.C., Durian, D.J.: Geometry dependence of the clogging transition in tilted hoppers. Phys. Rev. E 87, 052201 (2013)

    Article  ADS  Google Scholar 

  29. Thomas, C.C., Durian, D.J.: Fraction of clogging configurations sampled by granular hopper flow. Phys. Rev. Lett. 114, 178001 (2015)

    Article  ADS  Google Scholar 

  30. Tang, J., Behringer, R.P.: How granular materials jam in a hopper. Chaos 21, 041107 (2011)

    Article  ADS  Google Scholar 

  31. Nowak, E.R., Knight, J.B., Ben-Naim, E., Jaeger, H.M., Nagel, S.R.: Density fluctuations in vibrated granular materials. Phys. Rev. E 57, 1971 (1998)

    Article  ADS  Google Scholar 

  32. Hunt, M.L., Weathers, R.C., Lee, A.T., Brennen, C.E., Wassgren, C.R.: Effects of horizontal vibration on hopper flows of granular materials. Phys. Fluids 11, 1 (1999)

    Article  MATH  Google Scholar 

  33. Wassgren, C.R., Hunt, M.L., Freese, P.J., Palamara, J., Brennen, C.E.: Effects of vertical vibration on hopper flows of granular material. Phys. Fluids 14, 10 (2002)

    Article  MATH  Google Scholar 

  34. Chen, K., Stone, M.B., Barry, R., Lohr, M., McConville, W., Klein, K., Sheu, B.L., Morss, A.J., Scheidemantel, T., Schiffer, P.: Flux through a hole from a shaken granular medium. Phys. Rev. E 74, 011306 (2006)

    Article  ADS  Google Scholar 

  35. Mankoc, C., Garcimartín, A., Zuriguel, I., Maza, D., Pugnaloni, L.A.: Role of vibrations in the jamming and unjamming of grains discharging from a silo. Phys. Rev. E 80, 011309 (2009)

    Article  ADS  Google Scholar 

  36. Janda, A., Maza, D., Garcimartín, A., Kolb, E., Lanuza, J., Clément, E.: Unjamming a granular hopper by vibration. Europhys. Lett. 87, 24002 (2009)

    Article  ADS  Google Scholar 

  37. Mankoc, C., Garcimartín, A., Zuriguel, I., Maza, D., Pugnaloni, L.A.: Role of vibrations in the jamming and unjamming of grains discharging from a silo. Phys. Rev. E 80, 011309 (2009)

    Article  ADS  Google Scholar 

  38. Lozano, C., Lumay, G., Zuriguel, I., Hidalgo, R.C., Garcimartín, A.: Breaking arches with vibrations: the role of defects. Phys. Rev. Lett. 109, 068001 (2012)

    Article  ADS  Google Scholar 

  39. Arévalo, R., Zuriguel, I., Maza, D., Garcimartín, A.: Role of driving force on the clogging of inert particles in a bottleneck. Phys. Rev. E 89, 042205 (2014)

    Article  ADS  Google Scholar 

  40. Lozano, C., Zuriguel, I., Garcimartín, A.: Stability of clogging arches in a silo submitted to vertical vibrations. Phys. Rev. E 91, 062203 (2015)

    Article  ADS  Google Scholar 

  41. To, K., Tai, H.T.: The sands of time run faster near the end. Phys. Rev. E 96, 032906 (2017)

    Article  ADS  Google Scholar 

  42. To, K., Mo, Y.K., Huang, J.R.: Granular flow from silos with rotating orifice. arXiv:1902:00393 (2019)

  43. Drescher, A., Waters, A.J., Rhoades, C.A.: Arching in hoppers: II. Arching theories and critical outlet size. Powder Technol. 84, 177 (1995)

    Article  Google Scholar 

  44. Garcimartín, A., Zuriguel, I., Pugnaloni, L.A., Janda, A.: Shape of jamming arches in two-dimensional deposits of granular materials. Phys. Rev. E 82, 031306 (2010)

    Article  ADS  Google Scholar 

  45. Oldal, I., Keppler, I., Csizmadia, B., Fenyvesi, L.: Outflow properties of silos: the effect of arching. Adv. Powder Tech. 23, 290 (2012)

    Article  Google Scholar 

  46. Rubio-Largo, S.M., Janda, A., Maza, D., Zuriguel, I., Hidalgo, R.C.: Disentangling the free-fall arch paradox in silo discharge. Phys. Rev. Lett. 114, 238002 (2015)

    Article  ADS  Google Scholar 

  47. Börzsönyi, T., Somfai, E., Szabó, B., Wegner, S., Mier, P., Rose, G., Stannarius, R.: Packing, alignment and flow of shape-anisotropic grains in a 3D silo experiment. New J. Phys. 18, 093017 (2016)

    Article  ADS  Google Scholar 

  48. Uñac, R., Vidales, A., Pugnaloni, L.: The effect of the packing fraction on the jamming of granular flow through small apertures. J. Stat. Mech.: Theor. Exp. 04, P04008 (2012)

    Google Scholar 

  49. Hidalgo, R.C., Lozano, C., Zuriguel, I., Garcimartín, A.: Force analysis of clogging arches in a silo. Granul. Matter 15, 841 (2013)

    Article  Google Scholar 

  50. Aguirre, M.A., De Schant, R., Géminard, J.-C.: Granular flow through an aperture: influence of the packing fraction. Phys. Rev. E 90, 012203 (2014)

    Article  ADS  Google Scholar 

  51. Wang, Y., Lu, Y., Ooi, J.Y.: A numerical study of wall pressure and granular flow in a flat-bottomed silo. Powder Technol. 282, 43 (2015)

    Article  ADS  Google Scholar 

  52. Grudzien, K., Niedostatkiewicz, M., Adrien, J., Tejchman, J., Maire, E.: Quantitative estimation of volume changes of granular materials during silo flow using X-ray tomography. Chem. Eng. Proc.: Process Intensif. 50(1), 59 (2011)

    Article  Google Scholar 

  53. Gutiérrez, G., Colonnello, C., Boltenhagen, P., Darias, J.R., Peralta-Fabi, R., Brau, F., Clément, E.: Silo collapse under granular discharge. Phys. Rev. Lett. 114, 018001 (2015)

    Article  ADS  Google Scholar 

  54. Zuriguel, I., et al.: Silo clogging reduction by the presence of an obstacle. Phys. Rev. Lett. 107, 278001 (2011)

    Article  Google Scholar 

  55. Lozano, C., Janda, A., Garcimartín, A., Maza, D., Zuriguel, I.: Flow and clogging in a silo with an obstacle above the orifice. Phys. Rev. E 86, 031306 (2012)

    Article  ADS  Google Scholar 

  56. Dorbolo, S., et al.: Influence of the gravity on the discharge of a silo. Granul. Matter 15, 263 (2013)

    Article  Google Scholar 

  57. Arévalo, R., Zuriguel, I.: Clogging of granular materials in silos: effect of gravity and outlet size. Soft Matter 12, 123 (2016)

    Article  ADS  Google Scholar 

  58. Wilson, T.J., Pfeifer, C.R., Meysingier, N., Durian, D.J.: Granular discharge rate for submerged hoppers. P. Phys. 6, 060009 (2014)

    Google Scholar 

  59. Jin, B., Tao, H., Zhong, W.: Flow behaviors of non-spherical granules in rectangular hopper. Chin. J. Chem. Eng. 18, 931 (2010)

    Article  Google Scholar 

  60. Tao, H., Jin, B., Zhong, W., Wang, X., Ren, B., Zhang, Y., Xiao, R.: Discrete element method modeling of non-spherical granular flow in rectangular hopper. Chem. Eng. Process.: Process Intensif. 49, 151 (2010)

    Article  Google Scholar 

  61. Lozano, C., Zuriguel, I., Garcimartín, A., Mullin, T.: Granular segregation driven by particle interactions. Phys. Rev. Lett. 114, 178002 (2015)

    Article  ADS  Google Scholar 

  62. Tang, J., Behringer, R.P.: Orientation, flow, and clogging in a two-dimensional hopper: ellipses vs disks. Europhys. Lett. 114, 34002 (2016)

    Article  ADS  Google Scholar 

  63. Ashour, A., Wegner, S., Trittel, T., Börzsönyi, T., Stannarius, R.: Outflow and clogging of shape-anisotropic grains in hoppers with small apertures. Soft Matter 13, 402 (2017)

    Article  ADS  Google Scholar 

  64. Hong, X., Kohne, M., Morrell, M., Wang, H.R., Weeks, E.R.: Clogging of soft particles in two-dimensional hoppers. Phys. Rev. E 96, 062605 (2017)

    Article  ADS  Google Scholar 

  65. Ashour, A., Trittel, T., Börzsönyi, T., Stannarius, R.: Silo outflow of soft frictionless spheres. Phys. Rev. Fluids 2, 123302 (2017)

    Article  ADS  Google Scholar 

  66. Garcimartín, A., Pastor, J.M., Ferrer, L.M., Ramos, J.J., Martín-Gómez, C., Zuriguel, I.: Flow and clogging of a sheep herd passing through a bottleneck. Phys. Rev. E 91, 022808 (2015)

    Article  ADS  Google Scholar 

  67. Howell, D., Behringer, R.P., Veje, C.: Stress fluctuations in a 2D granular couette experiment: a continuous transition. Phys. Rev. Lett. 82, 5241 (1999)

    Article  ADS  Google Scholar 

  68. Majmudar, T.S., Behringer, R.P.: Contact force measurements and stress-induced anisotropy in granular materials. Nature 435, 1079 (2005)

    Article  ADS  Google Scholar 

  69. Brodu, N., Dijksman, J.A., Behringer, R.P.: Spanning the scales of granular materials through microscopic force imaging. Nat. Comm. 6, 6361 (2015)

    Article  ADS  Google Scholar 

  70. Szabó, B., Kovács, Z., Wegner, S., Ashour, A., Fischer, D., Stannarius, R., Börzsönyi, T.: Flow of anisometric particles in a quasi-two-dimensional hopper. Phys. Rev. E 97, 062904 (2018)

    Article  ADS  Google Scholar 

  71. Weis, S., Schröter, M.: Analyzing X-ray tomographies of granular packings. Rev. Sci. Instr. 88, 051809 (2017)

    Article  ADS  Google Scholar 

  72. Stannarius, R.: Magnetic resonance imaging of granular materials. Rev. Sci. Instr. 88, 051806 (2017)

    Article  ADS  Google Scholar 

  73. Dijksman, J.A., Brodu, N., Behringer, R.P.: Refractive index matched scanning and detection of soft particles. Rev. Sci. Instr. 88, 051807 (2017)

    Article  ADS  Google Scholar 

  74. Wegner, S., Stannarius, R., Boese, A., Rose, G., Szabo, B., Somfai, E., Börzsönyi, T.: Effects of grain shape on packing and dilatancy of sheared granular materials. Soft Matter 10, 5157 (2014)

    Article  ADS  Google Scholar 

  75. Dijksman, J.A., Zheng, H., Behringer, R.P.: Imaging soft sphere packings in a novel triaxial shear setup. AIP Conf. Proc. 1542, 457 (2013)

    Article  ADS  Google Scholar 

  76. Bertrand, T., Peixinho, J., Mukhopadhyay, S., MacMinn, C.W.: Dynamics of swelling and drying in a spherical gel. Phys. Rev. Appl. 6(6), 064010 (2016)

    Article  ADS  Google Scholar 

  77. Hong, X., Kohne, M., Weeks, E.R.: Clogging of soft particles in 2D hoppers. arXiv: 1512.02500v2 (2016)

  78. Dijksman, J.A., Brodu, N., Behringer, R.P.: Refractive index matched scanning and detection of soft particles. Rev. Sci. Instrum. 88, 051807 (2017)

    Article  ADS  Google Scholar 

  79. Torquato, S., Truskett, T.M., Debenedetti, P.G.: Is random close packing of spheres well defined? Phys. Lev. Lett. 84, 2064 (2000)

    Article  ADS  Google Scholar 

  80. Otsu, N.: Influence of particle shape and surface friction variability on response of rod-shaped particulate media. IEEE Trans. Syst. Man Cybern. SMC–9, 62 (1979)

    Article  Google Scholar 

Download references

Acknowledgements

We thank Torsten Trittel for valuable technical assistance. Tivadar Pongó and Maja Illig are acknowledged for participating in the measurements. The authors acknowledge financial support by DAAD and TEMPUS within the researcher exchange program (Grant No. 274464) and by the Hungarian National Research, Development and Innovation Office NKFIH under Grant OTKA K 116036. Georg Rose and Cindy Lübeck are cordially acknowledged for their assistance and for the opportunity to use the X-ray tomograph in the STIMULATE lab.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ralf Stannarius.

Ethics declarations

Conflict of interest

The authors declare that there is no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

This paper is dedicated to the memory of Robert P. Behringer.

This article is part of the Topical Collection: In Memoriam of Robert P. Behringer.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Stannarius, R., Sancho Martinez, D., Finger, T. et al. Packing and flow profiles of soft grains in 3D silos reconstructed with X-ray computed tomography. Granular Matter 21, 56 (2019). https://doi.org/10.1007/s10035-019-0910-x

Download citation

  • Received:

  • Published:

  • DOI: https://doi.org/10.1007/s10035-019-0910-x

Keywords

Navigation