Skip to main content
Log in

Micromechanical analysis of second order work in granular media

  • Original Paper
  • Published:
Granular Matter Aims and scope Submit manuscript

Abstract

This paper examines instabilities in granular materials from a microscopic point of view through numerical simulations conducted using a discrete element method on two three-dimensional specimens. The detection and the tracking of grain scale deformation mechanisms constitute the key point for a better understanding the failure process and puzzling out what lies behind the vanishing of the macroscopic second order work. For this purpose, the second order work from microscopic variables, involving contact force and branch vector, was introduced and tracked numerically. Then, all contacts depicting negative values of the second order work were deeply investigated, especially their spatial distribution (homogeneity, agglomeration, dispersion\(\ldots \)) within the specimen according to the density of the granular assembly and to the loading direction. A set of comparisons has been considered in this context in order to highlight how a specimen is populated with such contacts whether it is loaded along a direction included within the plastic tensorial zone or along a direction for which the specimen is likely to behave elastically (elastic tensorial zone). Moreover, these comparisons concerned also loading directions within the cone of instability so that links between the vanishing of both microscopic and macroscopic second order works can be established and the local mechanisms responsible for failure occurrence may be figured out.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17

Similar content being viewed by others

Notes

  1. The plastic tensorial zone groups all directions along which the response to the strain probe has a predominant plastic component compared to elastic one.

References

  1. Antony, S., Momoh, R., Kuhn, M.: Micromechanical modelling of oval particulates subjected to bi-axial compression. Comput. Mater. Sci. 29(4), 494–498 (2004)

    Article  Google Scholar 

  2. Bagi, K.: Analysis of microstructural strain tensors for granular assemblies. Int. J. Solids Struct. 43(10), 3166–3184 (2006)

    Google Scholar 

  3. Cundall, P.-A., Strack, O.-D.-L.: A discrete numerical model for granular assemblies. Geotechnique 29(1), 47–65 (1979)

    Article  Google Scholar 

  4. Diggle, P.J.: Statistical Analysis of Spatial Point Patterns, p. 148. Academic press, London (1983)

  5. Gardiner, B., Tordesillas, A.: Micromechanics of shear bands. Int. J. Solids Struct. 41(21), 5885–5901 (2004)

    Article  MATH  Google Scholar 

  6. Golshani, A., Okui, Y., Oda, M., Takemura, T.: A micromechanical model for brittle failure of rock and its relation to crack growth observed in triaxial compression tests of granite. Mech. Mater. 38(4), 287–303 (2006)

    Article  Google Scholar 

  7. Gudehus, G.: A comparison of some constitutive laws under radially symmetric loading and unloading. In: Wittke, I.W. (ed.) 3rd International Conference on Numerical Methods in Geomechanics, pp. 1309–1323. A.A. Balkema, Aachen (1979)

    Google Scholar 

  8. Hill, R.: A general theory of uniqueness and stability in elastic-plastic solids. J. Mech. Phys. Solids 6, 236–249 (1958)

    Article  ADS  MATH  Google Scholar 

  9. Iwashita, K., Oda, M.: Micro-deformation mechanism of shear banding process based on modified distinct element method. Powder Technol. 109(1–3), 192–205 (2000)

    Article  Google Scholar 

  10. Kuhn, M.R.: Structured deformation in granular materials. Mech. Mater. 31, 408–429 (1999)

    Article  Google Scholar 

  11. Kuhn, M.R.: Micro-mechanics of fabric and failure in granular materials. Mech. Mater. 42(9), 827–840 (2010)

    Article  Google Scholar 

  12. Kuhn, M.R., Bagi, K.: Contact rolling and deformation in granular media. Int. J. Solids Struct. 41(21), 5793–5820 (2004)

    Article  MATH  Google Scholar 

  13. Kuhn, M.R., Bagi, K.: On the relative motions of two rigid bodies at a compliant contact: application to granular media. Mech. Res. Commun. 32(4), 463–480 (2005)

    Article  MATH  Google Scholar 

  14. Kuhn, M.R., Chang, C.S.: Stability, bifurcation, and softening in discrete systems: a conceptual approach for granular materials. Int. J. Solids Struct. 43(20), 6026–6051 (2006)

    Article  MATH  Google Scholar 

  15. Lafond, V., Cordonnier, T., De Coligny, F., Courbaud, B.: Reconstructing harvesting diameter distribution from aggregate data. Ann. For. Sci. 69(2), 235–243 (2012)

    Article  Google Scholar 

  16. Laouafa, F., Darve, F.: Modelling of slope failure by a material instability mechanism. Computer. Geotech. 29(4), 301–325 (2002)

    Article  Google Scholar 

  17. Luding, S.: Micro-macro transition for anisotropic, frictional granular packings. Int. J. Solids Struct. 41, 5821–5836 (2004)

    Article  MATH  Google Scholar 

  18. Nicot, F., Darve, F., Koah, H.-D.-V.: Bifurcation and second-order work in geomaterials. Int. J. Num. Anal. Methods Geomech. 31, 1007–1032 (2007)

    Article  MATH  Google Scholar 

  19. Nicot, F., Hadda, N., Bourrier, F., Sibille, L., Darve, F.: Failure mechanisms in granular media: a discrete element analysis. Granul. Matter 13(3), 255–260 (2011)

    Article  Google Scholar 

  20. Nicot, F., Hadda, N., Bourrier, F., Sibille, L., Wan, R., Darve, F.: Inertia effects as a possible missing link between micro and macro second-order work in granular media. Int. J. Solids Struct. 49(10), 1252–1258 (2012a)

    Article  Google Scholar 

  21. Nicot, F., Sibille, L., Darve, F.: Bifurcation in granular materials: an attempt at a unified framework. Int. J. Solids Struct. 46, 3938–3947 (2009)

    Article  MATH  Google Scholar 

  22. Nicot, F., Sibille, L., Darve, F.: Failure in rate-independent granular materials as a bifurcation toward a dynamic regime. Int. J. Plast. 29, 136–154 (2012b)

    Google Scholar 

  23. Nicot, F., Darve, F.: Diffuse and localized failure modes: two competing mechanisms. Int. J. Numer. Anal. Meth. Geomech. 35(5), 586–601 (2011)

    Article  Google Scholar 

  24. Oda, M., Iwashita, K.: Study on couple stress and shear band development in granular media based on numerical simulation analyses. Int. J. Eng. Sci. 38(15), 1713–1740 (2000)

    Article  Google Scholar 

  25. Oda, M., Junichi, K., Siavouche, N.-N.: Experimental micromechanical evaluation of strength of granular materials effects of particle rolling. Mech. Mater. 1, 269–283 (1982)

    Article  Google Scholar 

  26. Oda, M., Takemura, T., Takahashi, M.: Microstructure of shear band developed in Toyoura sand by means of microfocus X-ray computed tomography. Géotechnique 54, 539–542 (2004)

    Article  Google Scholar 

  27. Pearson, K.: On the criterion that a given system of deviation from the probable in the case of a correlated system of variables is such that it can be reasonably supposed to have arisen from random sampling. Philos. Mag. Ser. 5(50), 157–175 (1900)

    Article  Google Scholar 

  28. Radjai, F., Roux, S., Moreau, J.J.: Contact forces in a granular packing. CHAOS 9(3), 544 (1999)

    Article  ADS  MATH  Google Scholar 

  29. Radjai, F., Wolf, D.E., Jean, M., Moreau, J.J.: Bimodal character of stress transmission in granular packings. Phys. Rev. Lett. 80(1), 61–64 (1998)

    Article  ADS  Google Scholar 

  30. Sibille, L., Donzé, F.V., Nicot, F., Darve, F.: Analysis of failure occurrence from direct simulations. Eur. J. Environ. Civ. Eng. 13(2), 187–202 (2009)

    Article  Google Scholar 

  31. Sibille, L., Donzé, F.-V., Nicot, F., Chareyre, B., Darve, F.: Bifurcation detection and catastrophic failure. Acta Geotecnica 3, 14–24 (2008)

    Google Scholar 

  32. Steele, M., Chaseling, J.: Powers of discrete goodness-of-fit test statistics for a uniform null against a selection of alternative distributions. Commun. Stat. Simul. Comput. 35(4), 1067–1075 (2006)

    Google Scholar 

  33. Tordesillas, A.: Force chain buckling, unjamming transitions and shear banding in dense granular assemblies. Philos. Mag. A Phys. Condens. Matter Struct. Defects Mech. Prop. 87(32), 4987–5016 (2007)

    Google Scholar 

  34. Tordesillas, A., Muthuswamy, M.: On the modeling of confined buckling of force chains. J. Mech. Phys. Solids 57(4), 706–727 (2009)

    Google Scholar 

  35. Tordesillas, A., Lin, Q., Zhang, J., Behringer, R.P., Shi, J.: Structural stability and jamming of self-organized cluster conformations in dense granular materials. J. Mech. Phys. Solids 59(2), 265–296 (2011). Elsevier

    Article  ADS  Google Scholar 

  36. Tordesillas, A., O’Sullivan, P., Walker, D.M.: Evolution of functional connectivity in contact and force chain networks: Feature vectors, k-cores and minimal cycles. Comptes Rendus Mécanique 338(10–11), 556–569 (2010). Elsevier Masson SAS

    Article  ADS  Google Scholar 

  37. Tordesillas, A., Walker, D.M., Lin, Q.: Force cycles and force chains. Phys. Rev. E 81, 011302 (2010)

    Article  ADS  Google Scholar 

  38. Walker, D.M., Tordesillas, A.: Topological evolution in dense granular materials: a complex networks perspective. Int. J. Solids Struct. 47(5), 624–639 (2010)

    Article  MATH  Google Scholar 

  39. Welker, P., McNamara, S.: Precursors to failure and weakening in a biaxial test. Granul. Matter 13, 93–105 (2011)

    Article  Google Scholar 

  40. Šmilauer, V., Catalano, E., Chareyre, B., Dorofeenko, S., Duriez, J., Gladky, A., Kozicki, J., et al.: Yade Documentation, The Yade Project. (2010) Retrieved from http://yade-dem.org/doc/

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nejib Hadda.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hadda, N., Nicot, F., Bourrier, F. et al. Micromechanical analysis of second order work in granular media. Granular Matter 15, 221–235 (2013). https://doi.org/10.1007/s10035-013-0402-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10035-013-0402-3

Keywords

Navigation