Skip to main content
Log in

On the influence of inter-particle friction and dilatancy in granular materials: a numerical analysis

  • Original Paper
  • Published:
Granular Matter Aims and scope Submit manuscript

Abstract

Mechanical behavior of granular soils is a classic research realm but still yet not completely understood as it can be influenced by a large number of factors, including confining pressure, soil density, loading conditions, and anisotropy of soil etc. Traditionally granular materials are macroscopically regarded as continua and their particulate and discrete nature has not been thoroughly considered although many researches indicate the macro mechanical behavior closely depends on the micro-scale characteristics of particles. This paper presents a DEM (discrete element method)-based micromechanical investigation of inter-particle friction effects on the behavior of granular materials. In this study, biaxial DEM simulations are carried out under both ‘drained’ and ‘undrained’ (constant volume) conditions. The numerical experiments employ samples having similar initial isotropic fabric and density, and the same confining pressure, but with different inter-particle friction coefficient. Test results show that the inter-particle friction has a substantial effect on the stress-strain curve, peak strength and dilatancy characteristics of the granular assembly. Clearly, it is noted that apart from the inter-particle friction, the shear resistance is also contributed to the dilation and the particle packing and arrangements. The corresponding microstructure evolutions and variations in contact properties in the particulate level are also elaborated, to interpret the origin of the different macro-scale response due to variations in the inter-particle friction.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

k n , k s :

Normal and tangential stiffness of contact model

D 50 :

Mean particle diameter in a particle assemblage

\({\sigma _x ,\sigma _y}\) :

Principal stresses along x and y directions respectively

\({\sigma _1^{\prime} ,\sigma _2^{\prime}}\) :

Major and minor principal stresses respectively

p, q :

Mean normal stress and deviatoric stress respectively

\({\varepsilon _a ,\varepsilon _v}\) :

Axial strain along y direction and volumetric strain respectively

\({\varepsilon _v^p ,\varepsilon _q^p}\) :

Plastic volumetric and deviatoric strains respectively

CN :

Coordination number

\({\varphi _\mu , \mu}\) :

Inter-particle friction angle and inter-particle friction coefficient

\({d_{ij},\delta _{ij}}\) :

Second order deviatoric tensor and Kronecker delta

n i :

Direction cosines of the unit vector with respective to the reference axes x i

\({E(\varphi ), E_0}\) :

A density function and mean value of the density over direction respectively

\({\Delta _d ,\varphi _d}\) :

Intensity and principal direction fabric tensor in general

\({r(\varphi ), r_0}\) :

Spatial distribution of quantity r and its mean value over direction respectively

\({\Delta _d^r , \varphi _d^r}\) :

Intensity and principal direction fabric tensor in term of quantity r

\({f_n (\varphi ), f_0}\) :

Normal contact force distribution and mean value of normal contact force respectively

\({f_t (\varphi )}\) :

Tangential contact force distribution

\({\Delta _d^n , \varphi _d^n}\) :

Intensity and principal direction of fabric tensor in terms of contact normal force

\({\Delta _d^t , \varphi _d^t}\) :

Intensity and principal direction of fabric tensor in terms of contact tangential force

\({f_\mu (\varphi )}\) :

Mobilized inter-particle friction distribution

\({\Delta _d^\mu , \varphi _d^\mu}\) :

Intensity and principal direction fabric tensor in terms of mobilized inter-particle friction

\({\phi _{\rm mob}}\) :

Mobilized friction angle

\({\eta ,\eta _{\rm res}}\) :

Mobilized stress ratio and stress ratio at residual state respectively

A.R.:

Aspect ratio of particle characterizing the particle’s shape

References

  1. Arthur J.R.F., Menzies B.K.: Inherent anisotropy in a sand. Géotechnique 22(1), 115–128 (1972)

    Article  Google Scholar 

  2. Oda M.: Initial fabrics and their relations to mechanical properties of granular materials. Soils Found. 12(1), 17–36 (1972)

    Article  Google Scholar 

  3. Bolton M.D.: The strength and dilatancy of sands. Géotechnique 36(1), 65–78 (1986)

    Article  Google Scholar 

  4. Ishihara K.: Liquefaction and follow failure during earthquakes. Géotechnique 43(3), 351–415 (1993)

    Article  Google Scholar 

  5. Yang Z.X., Li X.S., Yang J.: Undrained anisotropy and rotational shear in granular soil. Géotechnique 57(4), 371–384 (2007)

    Article  Google Scholar 

  6. Yang Z.X., Li X.S., Yang J.: Quantifying and modelling fabric anisotropy of granular soils. Géotechnique 58(4), 237–248 (2008)

    Article  Google Scholar 

  7. Cabalar A.F., Clayton C.R.I.: Some observations of the effects of pore fluids on the triaxial behaviour of a sand. Granul. Matter 12(1), 87–95 (2010)

    Article  Google Scholar 

  8. Santamarina, J.C., Cho, G.C.: Soil behaviour: the role of particle shape. In: Jardine, R.J., Potts, D.M., Higgins, K.G. (eds.) Advances in Geotechnical Engineering: The Skempton Conference, vol. 1, pp. 604–617. Thomas Telford, London (2004)

  9. Mitchell J.K., Soga K.: Fundamentals of soil behaviour, 3rd edn. Wiley, NJ (2005)

    Google Scholar 

  10. Cavarretta, I.: The influence of particle characteristics on the engineering behaviour of granular materials. PhD Thesis, The University of London (2009)

  11. Rowe P.W.: The stress-dilatancy relation for static equilibrium of an assembly of particles in contact. Proc. R. Soc. Lond. Ser. A 269(1339), 500–527 (1962)

    Article  ADS  Google Scholar 

  12. Skinner A.E.: A note on the influence of interparticle friction on the shearing strength of a random assembly of spherical particles. Géotechnique 19(1), 150–157 (1969)

    Article  Google Scholar 

  13. Haruyama M.: Effects of surface roughness on the shear characteristics of granular materials. Soils Found. 9(4), 48–67 (1969)

    Article  Google Scholar 

  14. Procter D.C., Barton R.R.: Measurements of the angle of interparticle friction. Géotechnique 24(4), 581–604 (1974)

    Article  Google Scholar 

  15. Cavarretta I., Coop M., O’Sullivan C.: The influence of particle characteristics on the behaviour of coarse grained soils. Géotechnique 60(6), 413–423 (2010)

    Article  Google Scholar 

  16. Chan L.C.Y., Page N.W.: Particle fractal and load effects on internal friction in powders. Powder Technol. 90(3), 259–266 (1997)

    Article  Google Scholar 

  17. Cho G.C., Dodds J., Santamarina J.C.: Particle shape effects on packing density, stiffness, and strength: natural and crushed sands. J. Geotech. Geoenviron. Eng. 132(5), 591–602 (2006)

    Article  Google Scholar 

  18. Guo P., Su X.: Shear strength, interparticle locking, and dilatancy of granular materials. Can. Geotech. J. 44, 579–591 (2007)

    Article  Google Scholar 

  19. Jensen R.P., Bosscher P.J., Plesha M.E., Edil T.B.: DEM simulation of granular media-structure interface: effects of surface roughness and particle shape. Int. J. Numer. Anal. Methods Geomech. 23, 531–547 (1999)

    Article  MATH  Google Scholar 

  20. Nouguier-Lehon C., Cambou B., Vincens E.: Influnece of paricle shape and angularity on the behavior of granular materials : a numerical analysis. Int. J. Numer. Anal. Methods Geomech. 27, 1207–1226 (2003)

    Article  MATH  Google Scholar 

  21. Peña A.A., García-Rojo G., Herrmann H.J.: Influence of particle shape on sheared dense granular media. Granul. Matter 9, 279–291 (2007)

    Article  MATH  Google Scholar 

  22. Peña A.A., Lizcano A., Alonso-Marroquín F., Herrmann H.J.: Biaxial test simulations using a packing of polygonal particles. Int. J. Numer. Anal. Methods Geomech. 32, 143–160 (2008)

    Article  Google Scholar 

  23. Thornton C.: Numerical simulations of deviatoric shear deformation of granular media. Géotechnique 50(1), 43–53 (2000)

    Article  Google Scholar 

  24. Powrie W., Ni Q., Harkness R.M., Zhang X.: Numerical modelling of plane strain tests on sands using a particulate approach. Géotechnique 55(4), 297–306 (2005)

    Article  Google Scholar 

  25. Alonso-Marroquín F., Luding S., Herrmann H.J., Vardoilakis I.: Role of anisotropy in the elastoplastic response of a polygonal packing. Phys. Rev. E 71, 051304 (2005)

    Article  ADS  Google Scholar 

  26. Suiker A.S.J., Fleck N.A.: Frictional collapse of granular assemblies. J. Appl. Mech. Trans. ASME 71(3), 350–358 (2004)

    Article  ADS  MATH  Google Scholar 

  27. Liu S., Matsuoka H.: Microscopic interpretation on a stress-dilatancy relationship of granular materials. Soils Found. 43(3), 73–84 (2003)

    Article  Google Scholar 

  28. Kruyt, N.P., Rothenburg, L.: Strength, dilatancy, energy and dissipation in quasi-static deformation of granular materials. In: García-Rojo, R., Herrmann, H.J., McNamara, S. (eds.) Powders and Grains, pp. 251. A.A. Balkema, Rotterdam (2005)

  29. Cundall P.A., Strack O.D.L.: A discrete numerical model for granular assemblies. Géotechnique 29(1), 47–65 (1979)

    Article  Google Scholar 

  30. Jiang M.J., Konrad J.M., Leroueil S.: An efficient technique for generating homogeneous specimens for DEM studies. Comput. Geotech. 30(7), 579–597 (2003)

    Article  Google Scholar 

  31. Feng Y.T., Han K., Owen D.R.J.: Filling domains with disks: an advancing front approach. Int. J. Numer. Methods Eng. 56(5), 699–713 (2003)

    Article  MATH  Google Scholar 

  32. Bagi K.: An algorithm to generate random dense arrangements for discrete element simulations of granular assemblies. Granul. Matter 7(1), 31–43 (2005)

    Article  MATH  Google Scholar 

  33. Cui L., O’Sullivan C.: Analysis of a triangulation based approach for specimen generation for discrete element simulations. Granul. Matter 5(3), 135–145 (2003)

    Article  MATH  Google Scholar 

  34. Li, X.: Micro-scale investigation on the quasi-static behavior of granular material. PhD Thesis, The Hong Kong University of Science and Technology (2006)

  35. Huang Z.Y., Yang Z.X., Wang Z.Y.: Discrete element modeling of sand behavior in a biaxial shear test. J. Zhejiang Univ. Sci. A 9(9), 1176–1183 (2008)

    Article  ADS  Google Scholar 

  36. Iwashita K., Oda M.: Rotational resistance at contacts in simulation of shear band development by DEM. J. Eng. Mech. ASCE 124, 285–292 (1998)

    Article  Google Scholar 

  37. Mahmood Z., Iwashita K.: Influence of inherent anisotropy on mechanical behavior of granular materials based on DEM simulations. Int. J. Numer. Anal. Methods Geomech. 34(8), 795–819 (2010)

    Google Scholar 

  38. Fu P., Dafalias Y.F.: Study of anisotropy shear strength of granular materials using DEM simulation. Int. J. Numer. Anal. Methods Geomech. 35(10), 1098–1126 (2011)

    Article  Google Scholar 

  39. PFC2D User’s manual, Itasca Consulting group, Inc., Minneapolis, USA (2005)

  40. Ng T.T.: Fabric evolution of ellipsoidal arrays with different particle shapes. ASCE J. Eng. Mech. 127, 994–999 (2001)

    Article  Google Scholar 

  41. Shodja H.M., Nezami E.G.: A micromechanical study of rolling and sliding contacts in assemblies of oval granules. Int. J. Numer. Anal. Methods Geomech. 27, 403–424 (2003)

    Article  MATH  Google Scholar 

  42. Oda M., Konishi J., Nemat-Nasser S.: Experimental micromechanical evolution of strength of granular materials: effects of particle rolling. Mech. Mater. 1(4), 269–283 (1982)

    Article  Google Scholar 

  43. Horne M.R.: The behaviour of an assembly of rotund, rigid, cohesionless particles III. Proc. R. Soc. Lond. Ser. A 310(1500), 21–34 (1969)

    Article  ADS  Google Scholar 

  44. Alonso-Marroquín F., Vardoulakis I., Herrmann H.J., Weatherley D., Mora P.: Effects of rolling on dissipation in fault gouges. Phys. Rev. E 74, 031306 (2006)

    Article  ADS  Google Scholar 

  45. Cambou B.: From Global to Local Variables in Granular Materials, Thorton, Editor, Powders & Grains, pp. 73–86. Balkema, Rotterdam (1993)

    Google Scholar 

  46. Drescher A.: An experimental investigation of flow rule for granular assemblies. Géotechnique 26(4), 49–65 (1976)

    Article  Google Scholar 

  47. Oda M., Konishi J., Nemat-Nasser S.: Some experimentally based fundamental results on the mechanical behaviour of granular materials. Géotechnique 30(4), 479–495 (1980)

    Article  Google Scholar 

  48. Oda M., Kazama H.: Microstructure of shear bands and its relation to the mechanisms of dilatancy and failure of dense granular soils. Géotechnique 48(4), 465–481 (1998)

    Article  Google Scholar 

  49. Oda M.: The mechanism of fabric changes during compressional deformation of sand. Soils Found. 12(2), 1–18 (1972)

    Article  Google Scholar 

  50. Bathurst R.J., Rothenburg L.: Investigation of micromechanical features of idealized granular assemblies using DEM. Eng. Comput. 9, 199–210 (1992)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Z. X. Yang.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Yang, Z.X., Yang, J. & Wang, L.Z. On the influence of inter-particle friction and dilatancy in granular materials: a numerical analysis. Granular Matter 14, 433–447 (2012). https://doi.org/10.1007/s10035-012-0348-x

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10035-012-0348-x

Keywords

Navigation