Skip to main content
Log in

Kinetic theory applied to inclined flows

  • Original Paper
  • Published:
Granular Matter Aims and scope Submit manuscript

Abstract

We apply the continuum equations of a kinetic theory to predict the features of uniform, steady, inclined flows of identical, frictional, inelastic spheres over a rigid, bumpy base between vertical, frictional side walls. Numerical solutions of these equations over a range of mass flow rates exhibit features seen in physical experiments and numerical solutions in the absence of side walls. For the densest flows, we employ a phenomenological extension of kinetic theory that involves a length scale associated with particle correlations. When a dense flow is thick enough, an algebraic balance between the production and dissipation of fluctuation energy reproduces the relation between mass flow rate and mass hold-up obtained when solving the boundary-value problem of the extended theory.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Goldhirsch I.: Rapid granular flows. Ann. Rev Fluid Mech. 35, 267 (2003)

    Article  MathSciNet  ADS  Google Scholar 

  2. Jenkins J.T., Richman M.W.: Grad’s 13-moment system for a dense gas of inelastic spheres. Arch. Rat. Mech. Anal. 87, 355 (1985)

    Article  MathSciNet  MATH  Google Scholar 

  3. Garzo V., Dufty J.W.: Dense fluid transport for inelastic hard spheres. Phys. Rev. E 59, 5895 (1999)

    Article  ADS  Google Scholar 

  4. Lutsko J.F.: Transport properties of dense dissipative hard-sphere fluids for arbitrary energy loss models. Phys. Rev. E 72, 021306 (2005)

    Article  ADS  Google Scholar 

  5. Chou C.-S., Richman M.W.: Constitutive theory for homogeneous granular shear flows of highly inelastic spheres. Physica A 259, 430 (1998)

    Article  Google Scholar 

  6. Montanero J.M., Garzo V., Santos A., Brey J.J.: Kinetic theory of simple granular shear flows of smooth hard spheres. J. Fluid Mech. 389, 391 (1999)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  7. Kumaran V.: Dense granular flow down an inclined plane: from kinetic theory to granular dynamics. J. Fluid Mech. 599, 120 (2008)

    Article  MathSciNet  ADS  Google Scholar 

  8. Lun C.K.K.: Kinetic theory for granular flow of dense, slightly inelastic, slightly rough spheres. J. Fluid Mech. 233, 539 (1991)

    Article  ADS  MATH  Google Scholar 

  9. Jenkins J.T., Zhang C.: Kinetic theory for identical, frictional, nearly elastic spheres. Phys. Fluids 14, 1228 (2002)

    Article  ADS  Google Scholar 

  10. Kumaran V.: Dynamics of dense, sheared granular flows. Part I. Structure and diffusion. J. Fluid Mech. 632, 109 (2009)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  11. Kumaran V.: Dynamics of dense, sheared granular flows. Part II. The relatively velocity distributions. J. Fluid Mech. 632, 145 (2009)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  12. Johnson P.C., Nott P., Jackson R.: Frictional-collisional equa- tions of motion for particulate flows and their application to chutes. J. Fluid Mech. 210, 501 (1990)

    Article  ADS  Google Scholar 

  13. Jenkins J.T.: Dense inclined flows of inelastic spheres. Granul. Matter 10, 47 (2007)

    Article  MATH  Google Scholar 

  14. Jenkins J.T., Berzi D.: Dense inclined flows of inelastic spheres: tests of an extension of kinetic theory. Granul. Matter 12, 151 (2010)

    Article  Google Scholar 

  15. Berzi D., Di Prisco C.G., Vescovi D.: Constitutive relations for steady, dense granular flows. Phys. Rev. E 84, 031301 (2011)

    Article  ADS  Google Scholar 

  16. Azanza E., Chevoir F., Moucheront P.: Experimental study of collisional granular flows down an inclined plane. J. Fluid Mech. 400, 199 (1999)

    Article  ADS  MATH  Google Scholar 

  17. Forterre Y., Pouliquen O.: Longitudinal vortices in granular fows. Phys. Rev. Lett. 86, 5886 (2001)

    Article  ADS  Google Scholar 

  18. Anderson K.G., Jackson R.: A comparison of the solutions of some proposed equations of motion of granular materials for fully developed flow down inclined planes. J. Fluid Mech. 241, 145 (1992)

    Article  ADS  Google Scholar 

  19. Berzi D., Jenkins J.T.: Surface flows of inelastic spheres. Phys. Fluids 23, 013303 (2011)

    Article  ADS  Google Scholar 

  20. Woodhouse M.J., Hogg A.J., Stellar A.A.: Rapid granular flow down inclined planar chutes. Part 1. Steady flows, multiple solutions, and existence domains. J. Fluid. Mech. 652, 427 (2010)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  21. Lun C.K.K., Bent A.A.: Numerical simulation of inelastic frictional spheres in simple shear flow. J. Fluid Mech. 258, 335 (1994)

    Article  ADS  Google Scholar 

  22. Herbst O., Huthmann M., Zippelius A.: Dynamics of inelastically colliding spheres with Coulomb friction: Dynamics of the relaxation of translational and rotational energy. Granul. Matter 2, 211 (2000)

    Article  Google Scholar 

  23. Carnahan N.F., Starling K.E.: Equations of state of non-attracting rigid spheres. J. Chem. Phys. 51, 635 (1969)

    Article  ADS  Google Scholar 

  24. Foerster S.F., Louge M.Y., Chang H., Allia K.: Measurements of Collision properties of small spheres. Phys. Fluids 6, 1108 (1994)

    Article  ADS  Google Scholar 

  25. Pouliquen O.: Scaling laws in granular flows down a bumpy inclined plane. Phys. Fluids 11, 542 (1999)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  26. Torquato S.: Nearest-neighbor statistics for packings of hard spheres and disks. Phys. Rev. E 51, 3170 (1995)

    Article  ADS  Google Scholar 

  27. Richman M.W.: Boundary conditions based on a modified Maxwellian velocity distribution function for flows of identical, smooth, nearly elastic spheres. Acta Mech. 75, 227 (1988)

    Article  Google Scholar 

  28. Pasini J.M., Jenkins J.T.: Aeolian transport with collisional suspension. Philos. Trans. R. Soc. 363, 1625 (2005)

    Article  ADS  MATH  Google Scholar 

  29. Jenkins J.T., Hanes D.M.: The balance of momentum and energy at an interface between colliding and freely flying grains in a rapid granular flow. Phys. Fluids A 5, 781 (1993)

    Article  ADS  Google Scholar 

  30. Mitarai N., Nakanishi H.: Bagnold scaling, density plateau, and kinetic theory analysis of dense granular flow. Phys. Rev. Lett. 94, 128001 (2005)

    Article  ADS  Google Scholar 

  31. Woodhouse M.J., Hogg A.J.: Rapid granular flow down inclined planar chutes. Part 2. Linear stability analysis of steady flow solutions. J. Fluid. Mech. 652, 461 (2010)

    Article  MathSciNet  ADS  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to James T. Jenkins.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Jenkins, J.T., Berzi, D. Kinetic theory applied to inclined flows. Granular Matter 14, 79–84 (2012). https://doi.org/10.1007/s10035-011-0308-x

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10035-011-0308-x

Keywords

Navigation