Skip to main content
Log in

The normal and oblique impact of three types of wet granules

  • Original Paper
  • Published:
Granular Matter Aims and scope Submit manuscript

Abstract

Impact tests against a hardened steel plate have been carried out to obtain the coefficient of restitution of three types of spherical granules. The dominant elastic γ-Al2O3, the elastic-plastic zeolite 4A and the dominant plastic sodium benzoate have been chosen as granule samples. An electromagnetic canon has been constructed to accelerate the granules and to measure the normal coefficient of restitution. The moisture content of the granules has been varied so that the pore saturation ranges between of S = 0–1. Thereby, the influence of the moisture content on the normal coefficient of restitution could be determined. A free fall apparatus, on which the impact angle is changeable in the range of ΘA = 0–80°, has been used to investigate the tangential coefficient of restitution. A high speed digital camera has been used to record the events of impact and rebound. The record frequency of the camera has been varied between 4,000 and 8,000 frames per second.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

Eabs :

Energy absorption during impact [J]

dm :

Mean diameter [m]

e:

Coefficient of restitution [–]

en, et :

Normal and tangential coefficient of restitution [–]

Fn :

Normal force [N]

Fr :

Friction force [N]

G:

Elastic shear modulus [Pa]

J:

Mass moment of inertia [kg · m2]

K:

Non-dimensional radius of gyration [–]

m:

Mass [kg]

mF :

Mass of the wet granule [kg]

mTS :

Mass of the dry granule [kg]

R:

Radius [m]

S:

Pore saturation [–]

vA, vR :

Impact and rebound velocity [m/s]

vn,A, vn,R, vt,A, vt,R :

Normal and tangential component of the impact and rebound velocity [m/s]

vn,KA, vn,KR, vt,KA, vt,KR :

Normal and tangential component of the impact and rebound velocity of the contact patch [m/s]

Wkin,A, Wkin,R :

Kinetic energy of the impact and rebound [J]

XW :

Moisture content [kgWater/kgTS]

\({\varepsilon}\) :

Porosity [–]

θ A, θ R :

Impact and rebound angle [°]

θ KR :

Rebound angle of the contact patch [°]

κ :

Ratio of tangential to normal stiffness [–]

μ :

Coefficient of Coulomb friction [–]

ν :

Poisson’s ratio [–]

ρ g :

Granule density [kg/m3]

ρ s :

Solid density [kg/m3]

\({\varphi_{\rm w}}\) :

Wall friction angle [°]

χ :

Non-dimensional parameter [–]

ΨA :

Non-dimensional impact angle [–]

ΨKR :

Non-dimensional rebound angle of the contact patch [–]

ω R :

Angular velocity after impact [ rad/s]

References

  1. Müller, P., Antonyuk, S., Tomas, J., Heinrich, S.: Ermittlung der normalen und tangentialen Stoßzahl von Granulaten. Chem. Ing. Tech. Submitted cite.201000131.R1 (2010)

  2. Mangwandi C., Cheong Y.S., Adams M.J., Hounslow M.J., Salman A.D.: The coefficient of restitution of different representative types of granules. Chem. Eng. Sci 62, 437–450 (2007)

    Article  Google Scholar 

  3. Fu J., Adams M.J., Reynolds G.K., Salman A.D., Hounslow M.J.: Impact deformation and rebound of wet granules. Powder Technol. 140, 248–257 (2004)

    Article  Google Scholar 

  4. Gorham D.A., Kharaz A.H.: The measurement of particle rebound characteristics. Powder Technol. 112, 193–202 (2000)

    Article  Google Scholar 

  5. Ozturk I., Kara M., Uygan F., Kalkan F.: Restitution coefficient of chick pea and lentil seeds. Int. Agrophys. 24(2), 209–211 (2010)

    Google Scholar 

  6. Müller P., Antonyuk S., Tomas J., Heinrich S.: Investigations of the restitution coefficient of granules. In: Bertram, A., Tomas, J. (eds) Micro-Macro-Interactions in Structured Media and Particle Systems, pp. 235–241. Springer, Berlin (2008)

    Google Scholar 

  7. Hunter S.C.: Energy absorbed by elastic waves during impact. J. Mech. Phys. Solids 5, 162–171 (1957)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  8. Wu C., Li L., Thornton C.: Energy dissipation during normal impact of elastic and elastic-plastic spheres. Int. J. Imp. Eng. 32, 593–604 (2005)

    Article  Google Scholar 

  9. Maw, N., Barber, J.R., Fawcett, J.N.: The oblique impact of elastic spheres, Elsevier Sequoia S. A. Lausanne 38(1), 101–114

  10. Koller, M.G.: Elastischer Stoß von Kugeln auf dicke Platten. Dissertation ETH Nr. 7299, Zürich (1983)

  11. Brilliantov N., Albers N., Spahn F., Pöschel T.: Collision dynamics of granular particles with adhesion. Phys. Rev. E 76, 051302 (2007)

    Article  ADS  Google Scholar 

  12. Dong H., Moys M.H.: Experimental study of oblique impacts with initial spin. Powder Technol. 161, 22–31 (2006)

    Article  Google Scholar 

  13. Kharaz A.H., Gorham D.A., Salman A.D.: An experimental study of the elastic rebound of spheres. Powder Technol. 120, 281–291 (2001)

    Article  Google Scholar 

  14. Antonyuk S., Heinrich S., Tomas J., Deen N.G., van Buijtenen M.S., Kuipers J.A.M.: Energy absorption during compression and impact of dry elastic-plastic spherical granules. Granul. Matter 12, 15–47 (2010)

    Article  Google Scholar 

  15. Cheong Y.S., Adams M.J., Routh A.F., Hounslow M.J., Salman A.D.: The production of binderless granules and their mechanical characteristics. Chem. Eng. Sci. 60, 4045–4053 (2005)

    Article  Google Scholar 

  16. Foerster S.F., Louge M.Y., Chang H., Allia K.: Measurements of the collision properties of small spheres. Phys. Fluids 6(3), 1108–1115 (1994)

    Article  ADS  Google Scholar 

  17. Sondergaard R., Chaney K., Brennen C.E.: Measurement of solid spheres bouncing off flat plates. J. Appl. Mech. 112, 694–699 (1990)

    Article  Google Scholar 

  18. Johnson K.L.: Contact Mechanics. Cambridge University Press, Cambridge (1992)

    Google Scholar 

  19. Stronge W.J.: Impact Mechanics. Cambridge University Press, Cambridge (2000)

    Book  MATH  Google Scholar 

  20. Thornton C.: Coefficient of restitution for collinear collisions of elastic-perfectly plastic spheres. J. Appl. Mech. 64, 383–386 (1997)

    Article  ADS  MATH  Google Scholar 

  21. Wu C., Thornton C., Li L.: A semi-analytical model for oblique impacts of elastoplastic spheres. Proc. R. Soc. 465, 937–960 (2009)

    Article  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Peter Mueller.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Mueller, P., Antonyuk, S., Stasiak, M. et al. The normal and oblique impact of three types of wet granules. Granular Matter 13, 455–463 (2011). https://doi.org/10.1007/s10035-011-0256-5

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10035-011-0256-5

Keywords

Navigation