Skip to main content
Log in

Investigation of rice grain flow by multi-sphere particle model with rolling resistance

  • Published:
Granular Matter Aims and scope Submit manuscript

Abstract

A multi-sphere (MS) model combined with rolling friction was considered for modelling elongated particles of irregular shape. The performance of the model was investigated by numerical simulations of the rice grain flow. A set of 5000 poly-dispersed milled rice grains were selected for the investigation purposes. They were characterised by a constant aspect ratio 3.5, while their maximum size was ranging from 6.4 to 7.3 mm. Filling and discharge flow as well as piling were simulated numerically with and without rolling resistance of particles. Simulation results were validated on the basis of experimental results. Good agreement of numerical and experimental results in terms of the discharge time and repose angle of the pile was reached simultaneously, when rolling resistance was introduced.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Cundall P.A., Strack O.D.L.: A discrete numerical model for granular assemblies. Geotechnique 29, 47–65 (1979)

    Article  Google Scholar 

  2. Džiugys A., Peters B.J.: An approach to simulate the motion of spherical and non-spherical fuel particles in combustion chambers. Granul. Mater. 3, 231–266 (2000)

    Article  Google Scholar 

  3. Wellmann C., Lillie C., Wriggers P.: A contact detection algorithm for superellipsoids based on the common-normal concept. Eng. Comput. 25, 432–442 (2008)

    Article  Google Scholar 

  4. Pena A., Garcia-Rojo R., Herrmann H.J.: Influence of particle shape on sheared dense granular media. Granul. Matter 9, 279–291 (2007)

    Article  MATH  Google Scholar 

  5. Pournin L., Weber M., Tsukahara M., Ferrez J.-A., Ramaioli M., Liebling T.M.: Three-dimensional distinct element simulation of spherocylinder crystallization. Granul. Matter 7(23), 119–126 (2005)

    Article  MATH  Google Scholar 

  6. Favier J.F., Abbaspour-Fard M.H., Kremmer M., Raji A.O.: Shape representation of axisymmetrical, non-spherical particles in discrete element simulation using multielement model particles. Eng. Comput. 16, 467–480 (1999)

    Article  MATH  Google Scholar 

  7. Abbaspour-Fard M.H.: Theoretical validation of a multi-sphere, discrete element model suitable for biomaterials handling simulation. Biosyst. Eng. 88, 153–161 (2004)

    Article  Google Scholar 

  8. Zhou C., Ooi J.Y.: Numerical investigation of progressive development of granular pile with spherical and non-spherical particles. J. Mech. Mater. 41(6), 707–714 (2009)

    Article  Google Scholar 

  9. Khanal M., Raghuramakrishnan R., Tomas J.: Discrete element method simulation of effect of aggregate shape on fragmentation of particle composites. Chem. Eng. Technol. 31(10), 1526–1531 (2008)

    Article  Google Scholar 

  10. Kruggel-Emden H., Rickelt S., Wirtz S., Scherer V.: A study on the validity of the multi-sphere discrete element method. Powder Technol. 188(2), 153–165 (2008)

    Article  Google Scholar 

  11. Markauskas D., Kačianauskas R., Džiugys A., Navakas R.: Investigation of adequacy of multi-sphere approximation of elliptical particles for DEM simulations. Granul. Matter 12(1), 107–123 (2010)

    Article  Google Scholar 

  12. Härtl J., Ooi J.Y.: Experiments and simulations of direct shear tests: porosity, contact friction and bulk friction. Granul. Matter J. (special issue) 10, 263–271 (2008)

    MATH  Google Scholar 

  13. Coetzee C.J., Els D.N.J.: Calibration of discrete element parameters and the modelling of silo discharge and bucket filling. Comput. Electron. Agric. 65(2), 198–212 (2009)

    Article  Google Scholar 

  14. Raji A.O., Favier J.F.: Model for the deformation in agricultural and food particulate materials under bulk compressive loading using discrete element method. I: Theory, model development and validation. J. Food Eng. 64, 359–371 (2004)

    Article  Google Scholar 

  15. Sakaguchi E., Suzuki M., Favier J.F., Kawakami S.: Numerical simulation of the shaking separation of paddy and brown rice using the discrete element method. J. Agric. Eng. Res. 79(3), 307–315 (2001)

    Article  Google Scholar 

  16. Alonso-Marroquin F., Wang Y.: An efficient algorithm for granular dynamics simulations with complex-shaped objects. Granul. Matter 11, 317–329 (2009)

    Article  Google Scholar 

  17. Tsuji Y., Tanaka T., Ishida T.: Lagrangian numerical simulation of plug of cohesionless particles in a horizontal pipe. Powder Technol. 71, 239–250 (1992)

    Article  Google Scholar 

  18. Balevičius R., Džiugys A., Kačianauskas R., Maknickas A., Vislavičius K.: Investigation of performance of programming approaches and languages used for numerical simulation of granular material by the discrete element method. Comput. Phys. Comm. 175, 404–415 (2006)

    Article  ADS  MATH  Google Scholar 

  19. Balevičius R., Kačianauskas R., Mroz Z., Sielamowicz I.: Discrete-particle investigation of friction effect in filling and unsteady/steady discharge in three-dimensional wedge-shaped hopper. Powder Technol. 187, 159–174 (2008)

    Article  Google Scholar 

  20. Zhou Y., Yang R.Y., Yu A.B.: Discrete particle simulation of particulate systems: theoretical developments. Chem. Eng. Sci. 62, 3378–3392 (2007)

    Article  Google Scholar 

  21. Luding S.: Cohesive, frictional powders: contact models for tension. Granul. Matter 10, 235–246 (2008)

    Article  MATH  Google Scholar 

  22. Zhou Y.C., Wright B.D., Yang R.Y., Xu B.H., Yu A.B.: Rolling friction in the dynamic simulation of sandpile formation. Phys. A 269, 536–553 (1999)

    Article  Google Scholar 

  23. Iwashita K., Oda M.: Micro-deformation mechanism of shear banding process based on modified distinct element method. Powder Technol. 109, 192–205 (2000)

    Article  Google Scholar 

  24. Tordesillas A., Walsh D.C.S.: Incorporating rolling resistance and contact anisotropy in micromechanical models of granular media. Powder Technol. 124(1-2), 106–111 (2002)

    Article  Google Scholar 

  25. Zhu H.P., Yu A.B.: Steady-state granular flow in a three-dimensional cylindrical hopper with flat bottom: microscopic analysis. J. Phys. D Appl. Phys. 37, 1497–1508 (2004)

    Article  Google Scholar 

  26. Jiang M.J., Yu H.-S., Harris D.: A novel discrete model for granular material incorporating rolling resistance. Comput. Geotech. 32(5), 340–357 (2005)

    Article  Google Scholar 

  27. Markauskas D., Kačianauskas R.: Investigation of the rolling resistance in DEM simulations of piling. J. Vibroeng. 11(3), 482–490 (2009)

    Google Scholar 

  28. Kačianauskas R., Maknickas A., Kačeniauskas A., Markauskas D., Balevičius R.: Parallel discrete element simulation of poly-dispersed granular material. Adv. Eng. Softw. 41, 52–63 (2010)

    Article  MATH  Google Scholar 

  29. Shitanda D., Nishiyama Y., Koide S.: Compressive strength properties of rough rice considering variation of contact area. J. Food Eng. 53, 53–58 (2002)

    Article  Google Scholar 

  30. Zhang Q., Yang W., Sun Z.: Mechanical properties of sound and fissured rice kernels and their implications for rice breakage. J. Food Eng. 68, 65–72 (2005)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Darius Markauskas.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Markauskas, D., Kačianauskas, R. Investigation of rice grain flow by multi-sphere particle model with rolling resistance. Granular Matter 13, 143–148 (2011). https://doi.org/10.1007/s10035-010-0196-5

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10035-010-0196-5

Keywords

Navigation